Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We consider an optimal control problem of the Mayer-type for a single-input, control affine, nonlinear system in small dimension. In this paper, we analyze effects that a modeling extension has on the optimality of singular controls when the control is replaced with the output of a first-order, time-invariant linear system driven by a new control. This analysis is motivated by an optimal control problem for a novel cancer treatment method, tumor anti-angiogenesis, when such a linear differential equation, which represents the pharmacokinetics of the therapeutic agent, is added to the model. We show that formulas that define a singular control of order 1 and its associated singular arc carry over verbatim under this model extension, albeit with a different interpretation. But the intrinsic order of the singular control increases to 2. As a, consequence, optimal concatenation sequences with the singular control change and the possibility of optimal chattering arcs arises.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
1501--1523
Opis fizyczny
Bibliogr. 53 poz., wykr.
Twórcy
autor
autor
- Department of Mathematics and Statistics, Southern Illinois University Edwardsville, Edwardsville, Illinois, 62026-1653, USA, uledzew@siue.edu
Bibliografia
- ANDERSON, A. and CHAPLAIN, M. (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull. Math. Biol. 60, 857-899.
- ARAKELYAN, L., VAINSTAIN, V. and AGUR, Z. (2002) A computer algorithm describing the process of vessel formation and maturation, and its use for predicting the effects of anti-angiogenic and anti-maturation therapy on vascular tumour growth. Angiogenesis 5, 203-214.
- BOEHM, T., FOLKMAN, J., BROWDER, T. and O’REILLY, M.S. (1997) Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature, 390, 404-407.
- BOLTYANSKY, V.G. (1966) Sufficient conditions for optirnality and the justification of the dynamic programming method. SIAM J. Control 4, 326-361.
- BONNARD, B. and CHYBA, M. (2003) Singular Trajectories and their Role in Control Theory. Mathematiques & Applications 40, Springer Verlag, Paris.
- BONNARD, B. AND DE MORANT, J. (1995) Toward a geometric theory in the time-minimal control of chemical batch reactors. SIAM J. Control Optim. 33, 1279-1311.
- BOSCAIN, U. and PICCOLl, B. (2004) Optimal Syntheses for Control Systems on 2-D Manifolds. Mathematiques & Applications 43, Springer Verlag, Paris.
- BRESSAN, A. and PICCOLI, B. (2007) Introduction to the Mathematical Theory of Control. American Institute of Mathematical Sciences.
- BRYSON, JR., A.E. and HO, Y.C. (1975) Applied Optimal Control Revised Printing, Hemisphere Publishing Company, New York.
- CASTIGLIONE, F. and PICCOLI, B. (2006) Optimal control in a model of dendritic cell transfection cancer immunotherapy. Bulletin of Mathematical Biology, 68, 255-274.
- CHYBA, M. and HABERKORN, T. (2003) Autonomous underwater vehicles: singular extremals and chattering. In: F. Cergioli et al., eds., Systems, Control, Modeling and Optimization. Springer Verlag, 103-113.
- DAVIS, S. and YANCOPOULOS, G.D. (1999) The angiopoietins: Yin and Yang in angiogenesis. Curr. Top. Microbiol. Immunol., 237, 173-185.
- DE PILLIS, L.G. and RADUNSKAYA, A. (2001) A mathematical tumor model with immune resistance and drug therapy: an optimal control approach. J. of Theoretical Medicine, 3, 79-100.
- D’ONOFRIO, A. and GANDOLFI, A. (2004) Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. Math. Biosci., 191, 159-184.
- EISEN, M. (1979) Mathematical Models in Cell Biology and Cancer Chemotherapy. Lecture Notes in Biornathematics, 30, Springer Verlag.
- ERGUN, A., CAMPHAUSEN, K. AND WEIN, L.M. (2003) Optimal scheduling of radiotherapy and angiogenic inhibitors. Bull, of Math. Biology, 65, 407-424.
- FELGENHAUER, U. (2003) On stability of bang-bang type controls. SIAM J. Control Optim., 41, (6), 1843-1867.
- FISTER, K.R. and PANETTA, J.C. (2000) Optimal control applied to cell-cycle-specific cancer chemotherapy. SIAM J. Appl. Math., 60, 1059-1072.
- FOLKMAN, J. (1972) Antiangiogenesis: new concept for therapy of solid tumors. Ann. Surg., 175, 409-416.
- FOLKMAN, J. (1995) Angiogenesis inhibitors generated by tumors. Mol. Med., 1, 120-122.
- GARDNER-MOVER, H. (1973) Sufficient conditions for a strong minimum in singular control problems. SIAM J. Control, 11, 620-636.
- HAHNFELDT, P., PANIGRAHY, D., FOLKMAN, J. and HLATKY, L. (1999) Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Research, 59, 4770-4775.
- KELLEY, H.J. (1964) A second variation test for singular extremals. AIAA (American Institute for of Aeronautics and Astronautics) J., 2, 1380-1382.
- KELLEY, H.J., KOPP, R. and MOVER, H.G. (1967) Singular Extremals. In: G. Leitmann, ed. Topics in Optimization, Academic Press.
- KERBEL, R.S. (1997) A cancer therapy resistant to resistance. Nature, 390, 335-336.
- KIRSCHNER, D., LENHART, S. and SERBIN, S. (1997) Optimal control of chemotherapy of HIV. J. Math. Biol, 35, 775-792.
- KLAGSBURN, M. and SOKER, S. (1993) VEGF/VPF: the angiogenesis factor found? Curr. Biol, 3, 699-702.
- KNOBLOCH, H.W. (1981) Higher Order Necessary Conditions in Optimal Control Theory. LNCIS 34, Springer Verlag, Berlin.
- LEDZEWICZ, U., MARRIOTT, J., MAURER, H. and SCHÄTTLER, H. (2009) Realizable protocols for optimal administration of drugs in mathematical models. Mathematical Medicine and Biology, to appear.
- LEDZEWICZ, U., MUNDEN, J. and SCHÄTTLER, H. (2009) Scheduling of Angiogenic Inhibitors for Gompertzian and Logistic Tumor Growth Models. Discrete and Continuous Dynamical Systems, Series B, to appear.
- LEDZEWICZ, U. and SCHÄTTLER, H. (2002a) Optimal bang-bang controls for a 2-compartment model in cancer chemotherapy. Journal of Optimization Theory and Applications - JOTA, 114, 609-637.
- LEDZEWICZ, U. and SCHÄTTLER, H. (2002b) Analysis of a cell-cycle specific model for cancer chemotherapy. J. of Biol. Syst., 10, 183-206.
- LEDZEWICZ, U. and SCHÄTTLER, H. (2005) The influence of PK/PD on the structure of optimal control in cancer chemotherapy models. Mathematical Biosciences and Engineering (MBE), 2, (3), 561-578.
- LEDZEWICZ, U. and SCHÄTTLER, H. (2006) Application of optimal control to a system describing tumor anti-angiogenesis. Proceedings of the 17th International Symposium on Mathematical Theory of Networks and Systems (MTNS), Kyoto, Japan, July 2006, 478-484.
- LEDZEWICZ, U. and SCHÄTTLER, H. (2007a) Anti-Angiogenic therapy in cancer treatment as an optimal control problem. SIAM J. Contr. Optim., 46, 1052-1079.
- LEDZEWICZ, U. and SCHÄTTLER, H. (2007b) Optimal controls for a model with pharmacokinetics maximizing bone marrow in cancer chemo-therapy. Mathematical Biosciences, 206, 320-342.
- MARTIN, R.B. (1992) Optimal control drug scheduling of cancer chemotherapy. Automatica, 28, 1113-1123.
- MAURER, H., BÜSKENS, C., KIM, J.H. and KAJA, Y. (2005) Optimization techniques for the verification of second-order sufficient conditions for bang-bang controls. Optimal Control, Applications and Methods, 26, 129-156.
- PICCOLI, B. and SUSSMANN, H. (2000) Regular synthesis and sufficient conditions for optimality. SIAM J. on Control and Optimization, 39, 359-410.
- SCHÄTTLER, H. and JANKOVIC, M. (1993) A Synthesis of time-opti-mal controls in the presence of saturated singular arcs. Forum Mathematicum, 5, 203-241.
- STEFANI, G. (2003) On sufficient optimality conditions for singular extremals. Proceedings of the 42nd IEEE Conference on Decision and Control (CDC), Maui, Hi, USA, December 2003, 2746-2749.
- SUSSMANN, H. J. (1982) Time-optimal control in the plane. In: Feedback Control of Linear and Nonlinear Systems, LNCS 39, Springer Verlag, Berlin, 244-260.
- SUSSMANN, H.J. (1987) The structure of time-optimal trajectories for single-input systems in the plane: the C∞ nonsingular case. SIAM J. Control Optim., 25, 433-465.
- SWAN, G.W. (1988) General applications of optimal control theory in cancer chemotherapy. IMA J. Math. Appl. Med. Biol., 5, 303-316.
- SWAN, G.W. (1990) Role of optimal control in cancer chemotherapy. Math. Biosci., 101, 237-284.
- SWIERNIAK, A. (1988) Optimal treatment protocols in leukemia - modelling the proliferation cycle. Proceedings of the 12th I MACS World Congress, Paris, 4, 170-172.
- SWIERNIAK, A. (1995) Cell cycle as an object of control. J. of Biological Systems, 3, 41-54.
- SWIERNIAK, A. (2008) Direct and indirect control of cancer populations. Bulletin of the Polish Academy of Sciences, Technical Sciences, 56, 367-378.
- SWIERNIAK, A., GALA, A., D’ONOFRIO, A. and GANDOLFI, A. (2006) Optimization of angiogenic therapy as optimal control problem. In: M. Doblare, ed., Proceedings of the 4th IASTED Conference on Biomechanics, Acta Press, 56-60.
- SWIERNIAK, A., LEDZEWICZ, U. and SCHÄTTLER, H. (2003) Optimal control for a class of compartmental models in cancer chemotherapy. Int. J. Applied Mathematics and Computer Science, 13, 357-368.
- SWIERNIAK, A., POLANSKI,A. and KIMMEL, M. (1996) Optimal control problems arising in cell-cycle-specific cancer chemotherapy. Cell Proliferation, 29, 117-139.
- ZELIKIN, M.I. and BORISOV, V.F. (1994) Theory of Chattering Control with Applications to Astronautics, Robotics, Economics and Engineering. Birkhäuser.
- ZELIKIN, M.I. and ZELIKINA, L.F. (1998) The structure of optimal synthesis in a neighborhood of singular manifolds for problems that are affine in control. Sbornik: Mathematics, 189, 1467-1484.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0046-0026