PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Shape optimization for stationary Navier-Stokes equations

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work discusses geometric optimization problems governed by stationary Navier-Stokes equations. Optimal domains are proved to exist under the assumption that the family of admissible domains is bounded and satisfies the Lipschitz condition with a uniform constant, and in the absence of the uniqueness property for the state system. Through the parametrization of the admissible shapes by continuous functions defined on a larger universal domain, the optimization parameter becomes a control, i.e. an element of that family of continuous functions. The approximating extension technique via the penalization of the Navier-Stokes equation enables the approximation of the associated shape optimization problem by an optimal control problem. Results on existence and uniqueness are proved for the approximating problem and a gradient-type algorithm is indicated.
Rocznik
Strony
1359--1374
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
autor
  • Department of Mathematics 1, University Politehnica of Bucharest, 313 Splaiul Independence!, RO-060042, Bucharest, Romania, halanay@mathem.pub.ro
Bibliografia
  • ADAMS, R. (1975) Sobolev Spaces. Academic Press, New York.
  • BORRVALL, T. and PETERSSON, J. (2003) Topology optimization of fluids in Stokes flow. International Journal for Numerical Methods in Fluids 41, 77-107.
  • DEDE, L. (2007) Optimal flow control for Navier-Stokes equations: Drag minimization. J. Numer. Meth. Fluids 55 (4), 347-366.
  • DELFOUR. M.C. and ZOLÉSIO, J.-P.(2001) Shapes and Geometries: Analysis, Differential Calculus and Optimization. SIAM, Philadelphia.
  • GALDI, G.P. (1998) An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Springer, New York.
  • GAO, Z. and MA, Y (2007) Optimal shape design for viscous incompressible flow, arxiv: math.oc/0701470vl.
  • GEYMONAT, G. and GILARDI, G. (1998) Contre-exemples á 1’inegalité de Korn et au lemme de Lions dans les domaines irreguliers. In: Equations aux derivees partielles. Articles dedies a J.L. Lions. Gauthier-Villars, Paris, 541-548.
  • GUNZBURGER, M. (2000) Adjoint equation-based methods for control problems in viscous, incompressible flows. Flow, Turbul., Comb. 65, 249-272.
  • LIONS, J.L. (1971) Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin.
  • LIONS, J.L. (1983) Contrôle des Systèmes Distributés Singuliers, Methodes Mathematiques de l’lnformatique 13, Gauthier-Villars, Paris.
  • MÄKINEN, R., NEITTAANMÄKI, P. and TIBA, D. (1992) On a fixed domain approach for shape optimization problem. In: W.F. Ames and P.J. van der Houwer, eds., Computational and Applied Mathematics II: Differential Equations. North-Holland, Amsterdam, 317-326.
  • MOHAMMADI, B. and PIRONNEAU, O. (2001) Applied Shape Optimization for Fluids. Oxford University Press, New York.
  • NEITTAANMÄKI, P. and TIBA, D. (1994) Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications. Monographs and Textbooks in Pure and Applied Mathematics, 179, Marcel Dekker, New York.
  • NEITTAANMÄKI, P., SPREKELS, J. and TIBA, D. (2006) Optimization of Elliptic Systems. Theory and Applications. Springer, New York.
  • NEITTAANMÄKI, P., PENNANEN, A. and TIBA, D. (2009) Fixed domain approaches in shape optimization problems with Dirichlet boundary conditions. J. of Inverse Problems 25, 1-18.
  • PIRONNEAU, O. (1984) Optimal Shape Design for Elliptic Systems. Springer, Berlin.
  • POSTA, M. and ROUBICEK, T. (2007) Optimal control of Navier-Stokes equations by Oseen approximations. Preprint 2007-013, Necas Center, Prague.
  • ROUBÍCEK, T. and TRÖLTZSCH, F. (2003) Lipschitz stability of optimal controls for steady-state Navier-Stokes equations. Control and Cybernetics, 32, 683-705.
  • TEMAM, R. (1979) Navier-Stokes Equations. Theory and Numerical Analysis. North-Holland, Amsterdam.
  • WANG, G. and YANG, D. (2008) Decomposition of vector-valued divergence free Sobolev functions and shape optimization for stationary Navier-Stokes equations. Comm. Part. Dig. Eq. 33, 429-449.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0046-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.