Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
It is well known that for a Bolza optimal control problem under state constraints every local minimizer satisfies a constrained maximum principle which may be degenerate. In the recent years several researchers proposed sufficient conditions for its nondegeneracy, e.g. Arutyanov and Assev (1997), Rampazzo and Vinter (1999, 2000), Galbraith and Vinter (2003). In all these papers the most important assumption links dynamics of a control system with tangent cones to constraints. It is the so called inward pointing condition of control theory that is in the same spirit with the well known Slater and Managasarian-Fromowitz conditions of mathematical programming. We propose here two sufficient conditions for normality when the boundary of constraints is C1 and the end point is free. The first one applies to every nondegenerate maximum principle without any assumptions on the initial state. The second one applies to every maximum principle, but involves an additional assumption on the initial conditions.
Czasopismo
Rocznik
Tom
Strony
1327--1340
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- CNRS, Combinatoire & Optimisation, Universite Pierre et Marie Curie 4 place Jussieu, 75252 Paris, France, frankowska@math.jussieu.fr
Bibliografia
- ARUTYANOV, A.V. and ASEEV, S.M. (1997) Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints. SIAM J. Control Optim. 35, 930-952.
- AUBIN, J.-P. and FRANKOWSKA, H. (1990) Set-valued Analysis. Birkhäuser-Boston-Basel, Berlin.
- BETTIOL, P. and FRANKOWSKA, H. (2007) Normality of the maximum principle for non convex constrained Bolza problems. J. Diff. Eqs. 243, 256 -269.
- BETTIOL, P. and FRANKOWSKA, H. (2008) Holder continuity of adjoint states and optimal controls for state constrained problems. Appl. Math. Optim. 57, 125-147.
- CANNARSA, P., FRANKOWSKA, H. and MARCHINI, E. (2009) On Bolza optimal control problems with constraints. Discrete and Continuous Dynamical Systems 11, 629-653.
- CERNEA, A. and FRANKOWSKA, H. (2006) A connection between the maximum principle and dynamic programming for constrained control problems. SIAM J. on Control Optim. 44, 673-703.
- DONTCHEV, A.I. and HAGER, W.W. (1998) A new approach to Lipschitz continuity in state constrained optimal control. Systems and Control Letters 35, 137-143.
- DUBOVITSKII, A.Y. and MILYUTIN, A. A. (1965) Extremal problems with constraints. USSR Comput. Math, and Math. Physics 5, 1-80.
- FRANKOWSKA, H. (2006) Regularity of minimizers and of adjoint states in optimal control under state constraints. J. of Convex Analysis 13, 299-328.
- FRANKOWSKA, H. and MARCHINI, E. (2006) Lipschitzianity of optimal trajectories for the Bolza optimal control problem. Calculus of Variations and PDE’s, 27, 467-492.
- GALBRAITH, G.N. and VINTER, R.B. (2003) Lipschitz continuity of optimal controls for state constrained problems. SIAM J. Control Optim. 42, 1727-1744.
- GAMKRELIDZE, R.V. (1960) Optimal control processes for bounded phase coordinates. Izv. Akad. Nauk SSSR Ser. Mat. 24, 315-356.
- HAGER, W.W. (1979) Lipschitz continuity for constrained processes. SIAM J. Control Optim. 17, 321-338.
- LUENBERGER, D.B. (1969) Optimization by Vector Space Methods. John Wiley & Sons, New York-London-Sydney-Toronto.
- RAMPAZZO, F. and VINTER, R.B. (1999) A theorem on existence of neighbouring trajectories satisfying a state constraint, with applications to optimal control. IMA 16, 335-351.
- RAMPAZZO, F. and VINTER, R.B. (2000) Degenerate optimal control problems with state constraints. SIAM J. Control Optim. 39, 989-1007.
- VINTER, R.B. (2000) Optimal Control. Birkhäuser, Boston-Basel-Berlin.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0046-0018