Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We prove that if ƒ : Zd → R is harmonic and there exists a polynomial W : Zd → R such that ƒ + W is nonnegative, then ƒ is a polynomial.
Wydawca
Rocznik
Tom
Strony
231--242
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
autor
- Institute of Mathematics, University of Warsaw, 02-097 Warszawa, Poland, p.nayar@students.mimuw.edu.pl
Bibliografia
- [1] D. Blackwell, Extension of the renewal theorem, Pacific J. Math. 3 (1953), 315-320.
- [2] G. Choquet et J. Deny, Sur l’équation de convolution μ = μ * σ, C. R. Acad. Sci. Paris 250 (1960), 799-801.
- [3] G. Darkiewicz, Nonnegative harmonic functions on graphs-probabilistic approach, Master Thesis, Univ. of Warsaw, 2001 (in Polish).
- [4] P. L. Davies and D. N. Shanbhag, A generalization of a theorem of Deny with applications in characterization theory, Quart. J. Math. Oxford Ser. 38 (1987), 13-34.
- [5] J. L. Doob, J. L. Snell and R. E. Williamson, Application of boundary theory to sums of independent random variables, in: Contributions to Probability and Statistics, Stanford Univ. Press, Stanford, CA, 1960, 182-197.
- [6] W. Hebisch and L. Saloff-Coste, Gaussian estimates for Markov chains and random walks on groups, Ann. Probab. 21 (1993), 673-709.
- [7] P. Nayar, The Liouville theorem for harmonic functions on the Zd lattice, Bachelor Thesis, Univ. of Warsaw, 2008 (in Polish).
- [8] W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge Univ. Press, Cambridge, 2000.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0044-0021