PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sandwiching the consistency strength of two global choiceless cardinal patterns

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We provide upper and lower bounds in consistency strength for the theories "ZF + ¬ACω + All successor cardinals except successors of uncountable limit cardinals are regular + Every uncountable limit cardinal is singular + The successor of every uncountable limit cardinal is singular of cofinality ω" and "ZF + ¬ACω + All successor cardinals except successors of uncountable limit cardinals are regular + Every uncountable limit cardinal is singular + The successor of every uncountable limit cardinal is singular of cofinality ω 1". In particular, our models for both of these theories satisfy "ZF + ¬ACω + κ is singular iff κ is either an uncountable limit cardinal or the successor of an uncountable limit cardinal".
Rocznik
Strony
189--197
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
  • Department of Mathematics, Baruch College of CUNY, New York, NY 10010, U.S.A.
Bibliografia
  • [1] A. Apter, A cardinal pattern inspired by AD, Math. Logic Quart. 42 (1996), 211-218.
  • [2] A. Apter, How many normal measures can אω1+1 carry?, Math. Logic Quart. 56 (2010), to appear.
  • [3] A. Apter, On the class of measurable cardinals without the axiom of choice, Israel J. Math. 79 (1992), 367-379.
  • [4] A. Apter, Some new upper bounds in consistency strength for certain choiceless large cardinal patterns, Arch. Math. Logic 31 (1992), 201-205.
  • [5] A. Apter, Some results on consecutive large cardinals II: Applications of Radin forcing, Israel J. Math. 52 (1985), 273-292.
  • [6] A. Apter and P. Koepke, Making all cardinals almost Ramsey, Arch. Math. Logic 47 (2008), 769-783.
  • [7] D. Busche and R. Schindler, The strength of choiceless patterns of singular and weakly compact cardinals, Ann. Pure Appl. Logic 159 (2009), 198-248.
  • [8] J. Cummings and W. H. Woodin, Generalised Prikry forcings, circulated manuscript.
  • [9] M. Foreman and W. H. Woodin, The GCH can fail everywhere, Ann. of Math. 133 (1991), 1-36.
  • [10] M. Gitik, Prikry-type forcings, forthcoming article in the Handbook of Set Theory.
  • [11] M. Gitik, Regular cardinals in models of ZF, Trans. Amer. Math. Soc. 290 (1985), 41-68.
  • [12] L. Radin, Adding closed cofinal sequences to large cardinals, Ann. Math. Logic 23 (1982), 263-283.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0044-0016
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.