PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

PH control of penicillin fermentation process using predictive approach

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bioprocesses which are involved in producing different pharmaceutical products may conveniently be classified according to the mode chosen for the process: either batch, fed-batch or continuous. From the control engineer's viewpoint they are fed-batch processes, which present the greatest challenge to get a pure product with a high concentration. Complicated dynamics, nonlinearity and non-stationarity make controlling them a very delicate task. pH control of bioreactors has been an interesting problem from both implementation and controller design points of view. This is particularly true if the complex microbial interactions yield significant nonlinear behavior. When this occurs, conventional control strategies may not succeed and more advanced strategies need to be suggested. This paper discusses model predictive control (MPC) based on a detailed unstructured model for penicillin production in a fed-batch fermentor. The approach used here is to use quadratic cost function for pH regulation, while taking into account control signal fluctuations in the optimization block. The result of applying the obtained controller and also its sensitivity to disturbance have been displayed and compared with the results of an auto-tuned PID controller used in previous works. The merit of this method is its low computational cost of solving the optimization problem, while leading to a closed form controller as well.
Czasopismo
Rocznik
Strony
65--74
Opis fizyczny
Bibliogr. 25 poz., wykr.
Twórcy
autor
autor
autor
  • School of Electrical and Computer Engineering, Control and Intelligent Processing Center of Excellence, University of Teheran, Teheran, Iran, a.ashoori@ece.ut.ac.ir
Bibliografia
  • [1] Liang J., Chen Y.Q., Optimization of a fed-batch fermentation process control competition problem using the NEOS server, Proceedings of the I MECH E Part I, Journal of Systems & Control Engineering, 15, 2003, pp. 427-432
  • [2] Johnson A., The control of fed-batch fermentation processes: A survey, Automatica, 23(6), 1987, pp. 691-705.
  • [3] Aguilar R., Gonzalz J., Barren M.A., Martinez-Guerra R., Maya-Yescas R., Robust PI2 controller for continuous bioreactors, Process Biochemistry, 36, 2000, pp. 1007-1013.
  • [4] Alford J.S., Bioprocess control: Advances and challenges, Journal of Computers and Chemical Engineering, 30, 2006, pp. 1464-1475.
  • [5] Renard F., Wouwer A.V., Robust adaptive control of yeast fed-batch cultures, Journal of Computers and Chemical Engineering, 32, 2008, pp. 1238-1248.
  • [6] Konstantinov K.B., Yoshida T., A Knowledge-Based Pattern Recognition Approach for Real-Time Diagnosis and Control of Fermentation Processes as Variable Structure Plants, IEEE Transactions on Systems, Man, and Cybernetics, 21(4), 1991, pp. 908-914.
  • [7] Horiuchi J., Fuzzy modeling and control of biological processes, Journal of Bioscience and Bioengineering, 94(6), 2002, pp. 574-578.
  • [8] Ramaswamy S., Cutright T.J., Qammar H.K., Control of a continuous bioreactor using model predictive control, Journal of Process Biochemistry, 40, 2005, pp. 2763-2770.
  • [9] Parker R.S., Nonlinear model predictive control of a continuous bioreactor using approximate data-driven models, Proceedings of the American Control Conference, Anchorage, AK, USA, 2002.
  • [10] Soni A.S., Parker R.S., Fed-batch bioreactor control using a multi-scale model, Proceedings of the American Control Conference, Denver, Colorado, USA, 2003.
  • [11] Shimizu K., An overview on the control system design of bioreactors, Advances in Biochemical Engineering and Biotechnology, 50, 1993, pp. 65-84.
  • [12] Honda H., Kobayashi T., Fuzzy control of bioprocess, Journal of Bioscience and Bioengineering, 89(5), 2000, pp. 401-408.
  • [13] Hosobuchi M., Fukui F., Matsukawa H., Suzuki T., Yoshikawa H., Fuzzy control during microbial production of ML-236B, a precursor of pravastatin sodium, Journal of Fermentation Technology, 76, 1993, pp. 482-486.
  • [14] Karakuzu C., Turker M,, Ozturk S., Modelling, on-line state estimation and fuzzy control of production scale fed-batch baker’s yeast fermentation. Control Engineering Practice, 14, 2006, pp. 959-974.
  • [15] Hisbullah M. Hussain A., Ramachandran K.B., Design of a fuzzy logic controller for regulating substrate feed to fed-batch fermentation, Trans IChemE, 81 (C), 2003, pp. 138-146.
  • [16] Bajpai R., Reuss M., A mechanistic model for penicillin Production, Journal of Chemical Technology and Biotechnology, 30, 1980, pp. 330-344.
  • [17] Birol G., Undey C., Cinar A., A modular simulation package for feed-batch fermentation: penicillin production, Journal of Computers and Chemical Engineering, 26, 2002, pp. 1553-1565.
  • [18] Schuler M., Kargi F., Bioprocess Engineering Basic Concepts, (2nd edition), Saddle River, NJ, Prentice Hall, 2002.
  • [19] Bailey J.E., Ollis D.F., Biochemical Engineering Fundamentals, New York, McGraw Hill, 1986.
  • [20] Nielsen J., Villadsen J., Bioreaction Engineering Principles, New York, Plenum Press, 1994.
  • [21] Nielsen J., Physiological Engineering Aspects of Penicillin chrysogenum, Singapore, World Scientific, 1997.
  • [22] Montague G., Morris A., Wright A., Aynsley M., Ward A., Growth monitoring and control through computer-aided online mass balancing in fed-batch penicillin fermentation, Canadian Journal of Chemical Engineering, 64, 1986, pp. 567-580.
  • [23] Camacho E.F., Bordons C., Model Predictive Control, Springer, 1999.
  • [24] Kariya T., Kurata H., Generalized Least Squares, Wiley, 2004.
  • [25] Clarke D.W., Mohtadi C., Tuffs P.S., Generalized Predictive Control. Part I: the Basic Algorithm, Automatica, 23(2), 1987, pp. 137-148.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0042-0027
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.