PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Generalized approximate midconvexity

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let X be a normed space and V ⊂ X a convex set with nonempty interior. Let α : [0, ∞) → [0, ∞) be a given nondecreasing function. A function ƒ : V → R is α(⋅)-midconvex if ƒ [wzór]. In this paper we study α(⋅)-midconvex functions. Using a version of Bernstein-Doetsch theorem we prove that if ƒ is α(⋅)-midconvex and locally bounded from above at every point then ƒ(rx + (1 - r)y) ≤ rƒ(x) + (1 - r)ƒ(y) + Pα(r, ¦¦x - y¦¦) for x,y ∈ V and r ∈ [0,1], where Pα : [0,1] x [0,∞) → [0,∞) is a specific function dependent on α. We obtain three different estimations of Pα. This enables us to generalize some results concerning paraconvex and semiconcave functions.
Rocznik
Strony
655--669
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
autor
  • Institute of Computer Science, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków, te, tabor@ii.uj.edu.pl
Bibliografia
  • BERNSTEIN, F. and DOETSCH, G. (1915) Zur Theorie der konvexen Funktionen. Math. Annalen 76, 514-526.
  • BOROS, Z. (2008) An inequality for the Takagi function. Math. Inequal. Appl. 11, 757-765.
  • CANNARSA, P. and SINESTRARI, C. (2004) Semiconvex functions, Hamilton-Jacobi equations and optimal control. Progress in Nonlinear Differential Equations and their Applications 58, Birkhäuser, Boston.
  • HÁZY, A. (2005) On approximate t-convexity. Mathematical Inequal. Appl. 8 (3), 389-402.
  • HÁZY, A. and PÁLES, Zs. (2004) On approximately midconvex functions. Bulletin London Math. Soc. 36 (3), 339-350.
  • HÁZY, A. and PÁLES, Zs. (2005) On approximately t-convex functions. Publ. Math. Debrecen 66 (3-4), 489-501.
  • HYERS, D.H., ISAC, G. and RASSIAS, TH.M. (1998) Stability of Functional Equations in Several Variables. Birkhäuser, Basel.
  • HYERS, D.H. and ULAM, S.M. (1952) Approximately convex functions. Proc. Amer. Math. Soc. 3, 821-828.
  • KUCZMA, M. (1985) An Introduction to the Theory of Functional Equations and Inequalities. PWN - Uniwersytet Śląski, Warszawa - Kraków - Katowice.
  • MAULDIN, R. and WILLIAMS, S. (1986) On the Hausdorff dimension of some graphs. Trans. Amer. Math. Soc. 298 (2), 793-803.
  • MROWIEC, J., TABOR, JACEK and TABOR, JÓZEF (2009) Approximately mid-convex functions. In: C. Bandle, A. Gilanyi, L. Losonczi, Z. Pales, M. Plum, eds., Inequalities and Applications. International Series of Numerical Mathematics 157, Birkhäuser, 261-265.
  • NG, C.T. and NIKODEM, K. (1993) On approximately convex functions. Proc. Amer. Math. Soc. 118, 103-108.
  • NIKODEM, K. and PÁLES, Zs. (2003/2004) On t-convex functions. Real Anal. Exchange 29 (1), 1-16.
  • PÁLES, Zs. (2003) On approximately convex functions. Proc. Amer. Math. Soc. 131 (1), 243-252.
  • ROLEWICZ, S. (1979) On paraconvex multifunctions. Oper. Research Verf. (Methods Oper. Res.) 31, 540-546.
  • ROLEWICZ, S. (1979) On γ-paraconvex multifunctions. Math. Japonica 24 (3), 293-300.
  • ROLEWICZ, S. (2000) On α(ּ)-paraconvex and strongly a(ּ)-paraconvex functions. Control and Cybernetics 29, 367-377.
  • ROLEWICZ, S. (2005) Paraconvex analysis. Control and Cybernetics 34, 951-965.
  • ROLEWICZ, S. (2006) An extension of Mazur’s theorem on Gateaux differentiability to the class of strongly γ(ּ)-paraconvex functions. Studia Math. 172 (3), 243-248.
  • TABOR, JACEK and TABOR, JÓZEF (2009) Takagi functions and approximate midconvexity. Journal of Mathematical Analysis and Applications 356 (2), 729-737.
  • YAMAGUTI, M. and HATA, M. (1983) Weierstrasse’s function and chaos. Hokkaido Math. J. 12, 333-342.
  • ZAJÍČEK, L. (2008) Differentiability of Approximately Convex, Semiconcave and Strongly Paraconvex Functions. Journal of Convex Analysis 15, 1-15.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0041-0012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.