Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let X be a normed space and V ⊂ X a convex set with nonempty interior. Let α : [0, ∞) → [0, ∞) be a given nondecreasing function. A function ƒ : V → R is α(⋅)-midconvex if ƒ [wzór]. In this paper we study α(⋅)-midconvex functions. Using a version of Bernstein-Doetsch theorem we prove that if ƒ is α(⋅)-midconvex and locally bounded from above at every point then ƒ(rx + (1 - r)y) ≤ rƒ(x) + (1 - r)ƒ(y) + Pα(r, ¦¦x - y¦¦) for x,y ∈ V and r ∈ [0,1], where Pα : [0,1] x [0,∞) → [0,∞) is a specific function dependent on α. We obtain three different estimations of Pα. This enables us to generalize some results concerning paraconvex and semiconcave functions.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
655--669
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
autor
- Institute of Computer Science, Jagiellonian University, Łojasiewicza 6, 30-348 Kraków, te, tabor@ii.uj.edu.pl
Bibliografia
- BERNSTEIN, F. and DOETSCH, G. (1915) Zur Theorie der konvexen Funktionen. Math. Annalen 76, 514-526.
- BOROS, Z. (2008) An inequality for the Takagi function. Math. Inequal. Appl. 11, 757-765.
- CANNARSA, P. and SINESTRARI, C. (2004) Semiconvex functions, Hamilton-Jacobi equations and optimal control. Progress in Nonlinear Differential Equations and their Applications 58, Birkhäuser, Boston.
- HÁZY, A. (2005) On approximate t-convexity. Mathematical Inequal. Appl. 8 (3), 389-402.
- HÁZY, A. and PÁLES, Zs. (2004) On approximately midconvex functions. Bulletin London Math. Soc. 36 (3), 339-350.
- HÁZY, A. and PÁLES, Zs. (2005) On approximately t-convex functions. Publ. Math. Debrecen 66 (3-4), 489-501.
- HYERS, D.H., ISAC, G. and RASSIAS, TH.M. (1998) Stability of Functional Equations in Several Variables. Birkhäuser, Basel.
- HYERS, D.H. and ULAM, S.M. (1952) Approximately convex functions. Proc. Amer. Math. Soc. 3, 821-828.
- KUCZMA, M. (1985) An Introduction to the Theory of Functional Equations and Inequalities. PWN - Uniwersytet Śląski, Warszawa - Kraków - Katowice.
- MAULDIN, R. and WILLIAMS, S. (1986) On the Hausdorff dimension of some graphs. Trans. Amer. Math. Soc. 298 (2), 793-803.
- MROWIEC, J., TABOR, JACEK and TABOR, JÓZEF (2009) Approximately mid-convex functions. In: C. Bandle, A. Gilanyi, L. Losonczi, Z. Pales, M. Plum, eds., Inequalities and Applications. International Series of Numerical Mathematics 157, Birkhäuser, 261-265.
- NG, C.T. and NIKODEM, K. (1993) On approximately convex functions. Proc. Amer. Math. Soc. 118, 103-108.
- NIKODEM, K. and PÁLES, Zs. (2003/2004) On t-convex functions. Real Anal. Exchange 29 (1), 1-16.
- PÁLES, Zs. (2003) On approximately convex functions. Proc. Amer. Math. Soc. 131 (1), 243-252.
- ROLEWICZ, S. (1979) On paraconvex multifunctions. Oper. Research Verf. (Methods Oper. Res.) 31, 540-546.
- ROLEWICZ, S. (1979) On γ-paraconvex multifunctions. Math. Japonica 24 (3), 293-300.
- ROLEWICZ, S. (2000) On α(ּ)-paraconvex and strongly a(ּ)-paraconvex functions. Control and Cybernetics 29, 367-377.
- ROLEWICZ, S. (2005) Paraconvex analysis. Control and Cybernetics 34, 951-965.
- ROLEWICZ, S. (2006) An extension of Mazur’s theorem on Gateaux differentiability to the class of strongly γ(ּ)-paraconvex functions. Studia Math. 172 (3), 243-248.
- TABOR, JACEK and TABOR, JÓZEF (2009) Takagi functions and approximate midconvexity. Journal of Mathematical Analysis and Applications 356 (2), 729-737.
- YAMAGUTI, M. and HATA, M. (1983) Weierstrasse’s function and chaos. Hokkaido Math. J. 12, 333-342.
- ZAJÍČEK, L. (2008) Differentiability of Approximately Convex, Semiconcave and Strongly Paraconvex Functions. Journal of Convex Analysis 15, 1-15.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0041-0012