PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Upper estimate of concentration and thin dimensions of measures

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We show upper estimates of the concentration and thin dimensions of measures invariant with respect to families of transformations. These estimates are proved under the assumption that the transformations have a squeezing property which is more general than the Lipschitz condition. These results are in the spirit of a paper by A. Lasota and J. Traple [Chaos Solitons Fractals 28 (2006)] and generalize the classical Moran formula.
Rocznik
Strony
149--162
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
autor
autor
Bibliografia
  • [1] M. F. Barnsley, Fractals Everywhere, Academic Press, New York, 1988.
  • [2] F. Bloom and W. Hao, The L2 squeezing property for nonlinear bipolar viscous fluids, J. Dynam. Differential Equations 6 (1994), 513-542.
  • [3] I. Chueshov and S. Siegmund, On dimension and metric properties of trajectory attractors, J. Dynam. Differential Equations 17 (2005), 621-641.
  • [4] L. Dung and B. Nicolaenko, Exponential attractors in Banach spaces, J. Differential Equations 13 (2001), 791-806.
  • [5] A. Eden, C. Foias, B. Nicolaenko and R. Temam, Exponential Attractors for Dissipative Evolution Equation, Masson, Paris, 1994.
  • [6] M. Efendiev, A. Miranville and S. Zelik, Exponential attractors for a nonlinear reaction-diffusion system in R3, C. R. Acad. Sci. Paris Ser. I 330 (2000), 713-718.
  • [7] H. Gacki, Applications of the Kantorovich-Rubinstein maximum principle in the theory of Markov semigroups, Dissertationes Math. 448 (2007), 59 pp.
  • [8] J. Jaroszewska and M. Rams, On the Hausdorff dimension of invariant measures of weakly contracting on average measurable IPS, J. Statist. Phys. 132 (2008), 907-919.
  • [9] T. Jordan and M. Pollicott, The Hausdorff dimension of measures for iterated function systems which contract on average, Discrete Contin. Dynam. Systems 22 (2008), 235-246.
  • [10] A. J. Koksch and J. Norbert, A modified strong squeezing property and inertial manifolds of semiflows, Arch. Math. (Brno) 36 (2000), 477-486.
  • [11] A. Lasota, A variational principle for fractal dimension, J. Nonlinear Anal. 64 (2006), 618-628
  • [12] A. Lasota and J. Myjak, Semifractals on Polish spaces, Bull. Polish Acad. Sci. Math. 46 (1998), 179-196.
  • [13] A. Lasota and J. Myjak, On a dimension of measures, Bull. Polish Acad. Sci. Math. 50 (2002), 221-235.
  • [14] A. Lasota and J. Traple, Dimension of invariant sets for mappings with the squeezing property, Chaos Solitons Fractals 28 (2006), 1271-1280.
  • [15] J. Mallet-Paret, Negatively invariant sets of compact maps and an extension of a theorem of Cartwright, J. Differential Equations 22 (1976), 331-341.
  • [16] P. A. P. Moran, Additive functions on intervals and Hausdorff measure, Proc. Cambridge Philos. Soc. 42 (1946), 15-23.
  • [17] D. Pražak, On finite fractal dimension of the global attractor for the wave equation with nonlinear damping, J. Differential Equations 14 (2002), 763-776.
  • [18] K. S. Promislov, The squeezing property and the decay of small vavelength in dissipative dynamical systems, Appl. Anal. 53 (1994), 233-239.
  • [19] M. Rams, Contracting-on-average, baker maps, Bull. Polish Acad. Sci. Math. 54 (2006), 219-229.
  • [20] T. Szarek, The dimension of self-similar measures, Bull. Polish Acad. Sci. Math. 48 (2000), 293-302.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0040-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.