PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface plasmon polariton applications in selected branches of modern science and technology

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Surface plasmon polaritons (SPP), electromagnetic waves coupled to collective free electron oscillations in metal, are of great interest in many fields of science and technology. This branch, which has recently undergone very rapid growth, gives hope to obtain new generation of very fast computer chips, produce more sensitive detectors, directly visualize fragile nanoobjects and design new metamaterials, which are responsible for interesting and counterintuitive phenomena such as reverse refraction and electromagnetic cloaking. The most interesting features and applications of SPP in various fields of technology are presented.
Rocznik
Strony
3--16
Opis fizyczny
Bibliogr. 42 poz., rys., wykr.
Twórcy
autor
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106 Warszawa, Poland, arosz@ippt.gov.pl
Bibliografia
  • 1. R. RAETHER, Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag, Berlin 1988.
  • 2. S.J. YOON and D. KIM, Thin-film-based field penetration engineering for surface plasmon resonance biosensing, 3. Opt. Soc. Am. A, 24, 9, 2543, 2007.
  • 3. D. PINES, Collective energy losses in solids, Rev. Mod. Phys., 28, 3, 184, 1956.
  • 4. T.W. EBBESEN, H.J. LEZEC, H.F. GHAEMI, T. THIO and P.A. WOLFF, Extraordinary optical transmission through subwavelength hole arrays, Nature, 391, 667, 1998.
  • 5. L. MARTIN-MORENO, F.J. GARCIA-VIDAL, H.J. LEZEC, K.M. PELLERIN, T. THIO, J.B. PENDRY and T.W. EBBESEN, Theory of extraordinary optical transmission through subwavelength hole arrays, Phys. Rev. Lett., 86, 6, 1114, 2001.
  • 6. A.V. ZAYATS, I.I. SMOLYANINOV and A. A. MARADUDIN, Nano-optics of surface plasmon polaritons, Elsevier, Phys. Rep., 408, 131, 2005.
  • 7. C. ROPERS, C.C. NEACSU, T. ELSAESSER, M. ALBRECHT, M.B. RASCHKE and C. LIENAU, Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source, Nano Lett., 7, 9, 2784, 2007.
  • 8. Y. KUROKAWA and H.T. MIYAZAKI, Metal-insulator-metal plasmon nanocavities: analysis of optical properties, Phys. Rev. B, 75, 035411, 2007.
  • 9. H.T. MIYAZAKI and Y. KUROKAWA, Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity, Phys. Rev. Lett., 96, 097401, 2006.
  • 10. H.T. MIYAZAKI and Y. KUROKAWA, Controlled plasmon resonance in closed metal/insulator/metal nanocavities, Appl. Phys. Lett., 89, 211126, 2006.
  • 11. B. HU, J. LIU, B.-Y. GU, S. DI, X.-D. SUN and S.-Q. WANG, Enhanced effect of local fields in subwavelength metallic series nanocavities from surface plasmon polaritons, J. Opt. Soc. Am. A, 24, 10, A1, 2007.
  • 12. A.V. KRASAVIN and A.V. ZAYATS, Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides, Appl. Phys. Lett., 90, 211101, 2007.
  • 13. J.-C. WEEBER, M.U. GONZALEZ, A.-L. BAUDRION and A. DEREUX, Surface plasmon routing along right angle bent metal strips, Appl. Phys. Lett., 87, 221101, 2005.
  • 14. M.U. GONZALEZ, J.-C. WEEBER, A.-L. BAUDRION, A. DEREUX, A. L. STEPANOV, J.R. KRENN, E. DEVAUX and T.W. EBBESEN, Design, near-field characterization, and modeling of 45º surface-plasmon Bragg mirrors, Phys. Rev. B, 73, 155416, 2006.
  • 15. H. DITLBACHER, J.R. KRENN, G. SCHIDER, A. LEITNER and P.R. AUSSENEGG, Two-dimensional optics with surface plasmon polaritons, Appl. Phys. Lett., 81, 10, 1762, 2002.
  • 16. M.T. HILL, Y.-S. OEI, B. SMALBRUGGE, Y. ZHU, T. DE VRIES, P. J. VAN VELDHOVEN, F.W.M. VAN OTTEN, T.J. EIJKEMANS, J.P. TURKIEWICZ, H. DE WAARDT, E.J. GELUK, S.-H. KWON, Y.-H. LEE, R. NOTZEL and M.K. SMIT, Losing in metallic-coated nanocavities, Nature Photonics, 1, 589, 2007.
  • 17. J. ELSER and V.A. PODOLSKIY, Scattering-free plasmonic optics with anisotropic metamaterials, Phys. Rev. Lett., 100, 066402, 2008.
  • 18. G. DOLLING, M. WEGENER, S. LINDEN and C. HORMANN, Photorealistic images of objects in effective negative-index materials, Opt. Express, 14, 5, 1842, 2006.
  • 19. N.I. LANDY, S. SAJUYIGBE, J.J. MOCK, D.R. SMITH and W.J. PADILLA, Perfect metamaterial absorber, Phys. Rev. Lett., 100, 207402, 2008.
  • 20. A. ALU and N. ENGHETA, Multifrequency optical invisibility cloak with layered plasmonic shells, Phys. Rev. Lett., 100, 113901, 2008.
  • 21. W. NASALSKI, Three-dimensional beam reflection at dielectric interfaces, Opt. Commun., 197, 217-233, 2001.
  • 22. J.B. GOTTE, A. AIELLO and J.P. WOERDMAN, Loss-induced transition of the Goos-Hänchen effect for metals and dielectrics, Opt. Expr., 16, 6, 3961-3969, 2008.
  • 23. A. AIELLO and J.P. WOERDMAN, Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts, Opt. Lett., 33, 13, 1437-1439, 2008.
  • 24. W. NASALSKI, Polarization versus spatial characteristics of optical beams at a planar isotropic interface, Phys. Rev. E, 74, 056613, 2006.
  • 25. W. SZABELAK and W. NASALSKI, Generation polarized Hermite-Gaussian beams at selected metamaterial structures [in Polish], Conference materials of XXXIX Zjazd Fizyków Polskich (Congress of Polish Physicists), 99, 2007.
  • 26. T. KOSCHNY, P. MARKOS, D.R. SMITH and C.M. SOUKOULIS, Resonant and antiresonant frequency dependence of the effective parameters of metamaterials, Phys. Rev. E, 68, 065602, 2003.
  • 27. J. ZUBIN, L.V. ALEKSEYEV and E. NARIMANOV, Optical hyperlens: far-field imaging beyond the diffraction limit, Opt. Exp., 14, 18, 8247, 2006.
  • 28. I.I. SMOLYANINOV, Y.-J. HUNG and C.C. DAVIS, Magnifying superlens in the visible frequency range, Science, 315, 1699, 2007.
  • 29. Z. LIU, H. LEE, Y. XIONG, C. SUN and X. ZHANG, Far-field optical hyperlens magnifying sub-diffraction-limited objects, Science, 315, 1686, 2007.
  • 30. I.P. RADKO, S.I. BOZHEVOLNYI, A.B. EVLYUKHIN and A. BOLTASSEVA, Surface plasmon polariton beam focusing with parabolic nanoparticle chains, Opt. Express, 15, 11, 6576, 2007.
  • 31. E. OZBAY, Plasmonics: merging photonics and electronics at nanoscale dimensions, Science, 311, 13, 189, 2006.
  • 32. D. PACIFICI, H.J. LEZEC and H.A. ATWATER, All-optical modulation by plasmonic excitation of CdSe quantum dots, Nat. Photonics, 1, 402, 2007.
  • 33. B.F. SOARES, F. JONSSON and N.I. ZHELUDEV, All-optical phase-change memory in a single gallium nanoparticle, Phys. Rev. Lett., 98, 153905, 2007.
  • 34. M. SANDTKE and L. KUIPERS, Slow guided surface plasmons at telecom frequencies, Nat. Photonics, 1, 573, 2007.
  • 35. E. LAUX, C. GENET, T. SKAULI and T.W. EBBESEN, Plasmonic photon sorters for spectral and polarimetric imaging, Nat. Photonics, 2, 161, 2008.
  • 36. M. SUZUKI, W. MAEKITA, Y. WADA, K. NAKAJIMA, K. KIMURA, T. FUKUOKA and Y. MORI, In-line aligned and bottom-up Ag nanorods for Surface-Enhanced Raman Spectroscopy, Appl. Phys. Lett., 88, 203121, 2006.
  • 37. S.O. KUCHEYEV, J.R. HAYES, J. BIENER, T. HUSER, C.E. TALLEY and A.V. HAMZA, Surface-enhanced Raman scattering on nanoporous Au, Appl. Phys. Lett., 89, 053102, 2006.
  • 38. L. MALIC, B. GUI, T. VERES and M. TABRIZIAN, Enhanced surface plasmon resonance imaging detection of DNA hybridization on periodic gold nanoposts, Opt. Lett., 32, 21, 3092, 2007.
  • 39. P.K. JAIN, I.H. EL-SAYED and M.A. EL-SAYED, Au nanoparticles target cancer, Nano Today, 2, 1, 18, 2007.
  • 40. S.-S. KIM, S.-I. NA, J. Jo, D.-Y. KIM and Y.-C. NAH, Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles, Appl. Phys. Lett., 93, 073307, 2008.
  • 41. K. KIM, J. LIU, M.A.G. NAMBOOTHIRY and D.L. CARROLL, Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics, Appl. Phys. Lett., 90, 163511, 2007.
  • 42. D. DERKACS, S.H. LIM, P. MATHEU, W. MAR and E.T. YU, Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles, Appl. Phys. Lett., 89, 093103, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0037-0014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.