PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bismuth Hall thruster I: Simulation-suggested design and performance

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A two-dimensional radial-axial hybrid simulation of the xenon-fueled Stanford Hall Thruster has been adapted to model a bismuth-fed thruster with varying channel geometry. The simulation treats the electrons as a quasi-one-dimensional fluid and the neutrals and ions as discrete superparticles advanced using a particle-in-cell (PIC) approach. Since experimental data of the electron cross-field mobility does not exist for the bismuth-fueled thruster, a model for electron transport based on shear suppression of plasma turbulence is used to compute a mobility from simulated plasma properties. While the bismuth propellant showed poor performance with an 8 cm channel length, results improved significantly as the simulated channel was shortened to 3.3 and 2.4 cm. The simulation of bismuth propellant at the shortest channel length provided significantly improved ionization fraction, thrust, efficiency, and thrust-to-power compared to xenon propellant on either the 8 cm or 2.4 cm channel, as can be expected due to the higher atomic mass and lower ionization potential of bismuth. With results indicating that optimal performance of the bismuth thruster occurs with a sub-3 cm channel length, such a design is suggested for a developing laboratory-model bismuth thruster.
Słowa kluczowe
Rocznik
Strony
329--348
Opis fizyczny
Bibliogr. 33 poz., wykr.
Twórcy
autor
Bibliografia
  • 1. S. BARRAL, K. MAKOWSKI, Z. PERADZYŃSKI, N. GASCON, M. DUDECK, Wall material effects in stationary plasma thrusters. II. Near-wall and in-wall conductivity, Physics of Plasmas, 10, 10, 4137, 2003.
  • 2. H. BIGLARI, P.H. DIAMOND, P.W. TERRY, Influence of sheared poloidal rotation on edge turbulence, Physics of Fluids B, 2, 1, 1990.
  • 3. J.P. BOEUF, L. GARRIGUES, Low frequency oscillations in a stationary plasma thruster, Journal of Applied Physics, 84, 7, 3541-3554, 1998.
  • 4. D. BOHM, E.H.S BURHOP, H.S.W. MASSEY, The Characteristics of Electrical Discharges in Magnetic Fields, p. 13, McGraw Hill, New York, NY, 1949.
  • 5. K.H. BURRELL, Effects of ExB velocity shear and magnetic shear on turbulence and transport in magnetic confinement devices, Physics of Plasmas, 4, 5, 1996.
  • 6. M.A. CAPPELLI, N.B. MEEZAN, N. GASCON, Transport physics in Hall plasma thrusters, 40th AIAA Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, AIAA-2002-0485, 2002.
  • 7. J.V. DUGAN JR., R.J. SOVIE, Volume ion production costs in tenuous plasmas: a general atom theory and detailed results for helium, argon, and cesium, NASA Technical Note, NASA TN D-4150, 1967.
  • 8. E. FERNANDEZ, M. CAPPELLI, K. MAHESH, 2D simulations of Hall thrusters, Annual Research Briefs, pp. 81-90, Center for Turbulence Research, Stanford University, 1998.
  • 9. J.M. FIFE, Hybrid-PIC Modeling and Electrostatic Probe Survey of Hall Thrusters, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1999.
  • 10. R.S. FREUND, R.C. WETZEL, R.J. SHUL, T.R. HAYES, Cross-section measurements for electron-impact ionization of atoms, Physical Review A, 41, 7, 3575-3595, 1990.
  • 11. N. GASCON, M. DUDECK, S. BARRAL, Wall material effects in stationary plasma thrusters. L Parametric studies of an SPT-100, Physics of Plasmas, 10, 10, 4123-4136, 2003.
  • 12. T.S. HAHM, Physics behind transport barrier theory and simulations, Plasma Physics and Controlled Fusion, 44, A87-A101, 2002.
  • 13. W.A. HARGUS JR., Investigation of the Plasma Acceleration Mechanism within a Coaxial Hall Thruster, Leland Stanford Junior University, Stanford, CA, 2001.
  • 14. S. JACHMICH, M. VAN SCHOOR, R. WEYNANTS, On the causality between transport reduction and induced electric fields in the edge of a tokamak, Proceedings of the 39th Conference on Plasma Physics and Controlled Fusion, European Physical Society, 26B, 2002.
  • 15. G.S. JANES, R.S. LOWDER, Anomalous electron diffusion and ion acceleration in a low density plasma, Physics of Fluids, 9, 6, 1115-1123, 1966.
  • 16. C. MARRESE-READING, A. SENGUPTA, R. FRISBEE, J. POLK, M. CAPPELLI, I. BOYD, M. KEIDAR, S. TVERDOKHLEBOV, S. SEMBNKIN, T. MARKUSIC, A. YALIN, T. KNOWLES, The VHITAL program to demonstrate the performance and lifetime of a bismuth-fueled very high Isp Hall thruster, 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference, American Institute of Aeronautics and Astronautics, AIAA-2005-4564, 2005.
  • 17. N.B. MEEZAN, Electron Transport in a Coaxial Hall Discharge, Ph.D. Thesis, Leland Stanford Junior University, Stanford, CA, 2002.
  • 18. N.B. MEEZAN, W.A. HARGUS, M.A. CAPPELLI, Anomalous electron moblity in a coaxial Hall plasma discharge, Physical Review E, 63, 026410, 2001.
  • 19. D. RAPP, P. ENGLANDER-GOLDEN, Total Cross sections for ionization and attachment in gases by electron impact. I. Positive ionization, The Journal of Chemical Physics, 43, 5, 1464-1479, 1965.
  • 20. C.P. RITZ, H. LIN, T.L. RHODES, A.J. WOOTTON, Evidence for confinement improvement by velocity-shear suppression of edge turbulence, Physical Review Letters, 65, 20, 1990.
  • 21. D.B. SCHARFE, M.A. CAPPELLI, Stationary reference Bi discharge cell for optical diagnostics of a bismuth Hall thruster, 29th International Electric Propulsion Conference, Electric Rocket Propulsion Society, 2005, IEPC-2005-058.
  • 22. M.K. SCHARFE, C.A. THOMAS, D.B. SCHARFE, N. GASCON, M.A. CAPPELLI, Shear-based model for electron transport in 2D hybrid Hall thruster simulations, 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, American Institute of Aeronautics and Astronautics, 2007, AIAA-2007-5208.
  • 23. M.K. SCHARFE, N. GASCON, M.A. CAPPELLI, E. FERNANDEZ, Comparison of a hybrid Hall thruster model to experimental measurements, Physics of Plasmas, 13, 083505, 2006.
  • 24. M.K. SCHARFE, C.A. THOMAS, D.B. SCHARFE, N. GASCON, M.A. CAPPELLI, E. FERNANDEZ, Shear-based model for electron transport in hybrid Hall thruster simulations, IEEE Transactions on Plasma Science, 2008 [in press].
  • 25. A.W. SMITH, M.A. CAPPELLI, Numerical investigation of electron behavior in the near-field of Hall thrusters, 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, American Institute of Aeronautics and Astronautics, 2007, AIAA-2007-5240.
  • 26. E.J. SYNAKOWSKI, S.H. BATHA, M.A. BEER, M.G. BELL, R.E. BELL, R.V. BUDNY, C.E. BUSH, P.C. EFTHIMION, T.S. HAHM, G.W. HAMMET, Local transport barrier formation and relaxation in reverse-shear plasmas on the Tokamak Fusion Test Reactor, Physics of Plasmas, 4, 5, 1736-1744, 1997.
  • 27. P.W. TERRY, Does flow shear suppress turbulence in nonionized flows?, Physics of Plasmas, 7, 5, 1653-1661, 2000.
  • 28. P.W. TERRY, Suppression of turbulence and transport by sheared flow, Reviews of Modern Physics, 72, 1, 2000.
  • 29. P.W. TERRY, D.E. NEWMAN, A.S. WARE, Suppression of transport cross phase by strongly sheared flow, Physical Review Letters, 87, 18, 2001.
  • 30. C. THOMAS, Anomalous Electron Transport in the Hall-Effect Thruster, Ph.D. Thesis, Leland Stanford Junior University, Stanford, California, 2006.
  • 31. S. TVERDOKHLEBOV, A. SEMENKIN, J. POLK, Bismuth propellant option for very high power TAL thruster, 40th AIAA Aerospace Sciences Meeting & Exhibit, American Institute of Aeronautics and Astronautics, 2002, AIAA-2002-0348.
  • 32. A.S. WARE, P.W. TERRY, P.H. DIAMOND, B.A. CARRERAS, Transport reduction via shear flow modification of the cross phase, Plasma Physics and Controlled Fusion, 38, 1343-1347, 1996.
  • 33. Y.Z. ZHANG, S.M. MAHAJAN, Edge turbulence scaling with shear flow, Physics of Fluids B, 4, 6, 1385-1387, 1992.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0036-0049
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.