Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We consider different convexity notions for functions F: K^2x2 → R. We give a new characterisation of polyconvexity and a sufficient condition for quasiconvexity.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
207--211
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
- Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-956 Warszawa, Poland, krynski@mimuw.edu.pl
Bibliografia
- [1] J.-J. Alibert and B. Dacorogna, An example of a quasiconvex function that is not polyconvex in two dimensions, Arch. Ration. Mech. Anal. 117 (1992), 155-166.
- [2] J. M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, ibid. 63 (1978), 337-403.
- [3] —, Remarks on the paper `Basic calculus of variations`, Pacific J. Math. 116 (1985), 7-10.
- [4] H. Busemann, G. Ewald and G. C. Shephard, Convex bodies and convexity on Grassmann cones, Math. Ann. 151 (1963), 1-41.
- [5] K. Chełmiński and A. Kałamajska, New convexity conditions in the calculus of variations and compensated compactness theory, ESAIM Control Optim. Calc. Var. 12 (2006), 64-92.
- [6] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer, 1988.
- [7] T. Iwaniec and J. Kristensen, A construction of quasiconvex functions, Riv. Mat. Univ. Parma (7) 4* (2005), 75-89.
- [8] C. B. Morrey, Quasiconvexity and the lower semicontinuity of multiple integrals, Pacific J. Math. 2, 25-53, (1952).
- [9] P. Pedregal and V. Sverak, A note on quasiconvexity and rank-one convexity for 2 x 2 matrices, J. Convex Anal. 5 (1998), 107-117.
- [10] V. Sverak, Rank-one convexity does not imply quasiconvexity, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), 185-189.
- [11] —, Quasiconvex functions with subquadratic growth, Proc. Roy. Soc. London Ser. A 433 (1991), 723-725.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0035-0003