PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis and optimal control of linear time varying systems via the linear legendre mother wavelets

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A method for finding the optimal control of a linear time varying system with quadratic performance index is discussed. This method is based on using the linear Legendre mother wavelets. The properties of the linear Legendre mother wavelets are presented. The operational matrices of integral and product are utilized to reduce the solution of optimal control to the explicit solution of algebraic equations. An illustrative example is included to demonstrate the validity and applicability of the technique.
Czasopismo
Rocznik
Strony
5--10
Opis fizyczny
Bibliogr. 17 poz., wykr.
Twórcy
autor
autor
  • Mathematic Department, Mathematical Sciences Faculty, Shahid Beheshti University, Evin, Tehran, Iran, f-khellat@sbu.ac.ir
Bibliografia
  • [1] Chang Y.F., Lee T.T., Application of general orthogonal polynomials to the optimal control of time varying linear systems. Int. J. Control, Vol. 43, 1986, pp. 1283-1304.
  • [2] Chou J.H., Horng I.R., Application of Chebyshev polynomials to the optimal control of time varying linear systems, Int. J. Control, Vol. 41, 1985, pp. 135-144.
  • [3] Daubechies I., Ten Lectures on wavelets, SIAM, Philadelphia, 1992.
  • [4] Hosseiniun S.A.R., Khellat F., Radjabalipour M., Analysis of time-delay dynamical systems using the linear Legendre mother wavelets, Journal of the Franklin Institute, submitted, 2007.
  • [5] Hsio C.H., Wang W.J., Slate analysis and optimal control of linear lime varying systems via flaar wavelets, Optim. Cont. Appl. Meth., Vol. 19, 1998, pp. 423-433.
  • [6] Hsu N.S., Cheng B., Analysis and optimal control of lime varying linear systems via block pulse functions, Int. J. Control, Vol. 33, 1981, pp. 1107-1122.
  • [7] Hwang C., Chen M.Y., Analysis and optimal control of time varying linear systems via shifted Legendre polynomials. Int. J. Control, Vol. 41, 1985, pp. 1317-1330.
  • [8] Karimi H.R., Moshiri B., Lohman B., Jabehdar Maralani P., Haar wavelet-based approach for optimal control of second-order linear systems in time domain, J. Dynam. Cont. Sys., Vol. 11, No. 2, 2005, pp. 232-237.
  • [9] Khellat F., Yousefi S.A., The linear Legendre mother wavelets operational matrix of integral and its application. Journal of the Franklin Institute, Vol. 343, 2006, pp. 181-190.
  • [10] Liu C.C., Shih Y.P., Analysis and optimal control of time varying systems via Chebyshev polynomials, Int. J. Control, Vol. 38, 1983, pp. 1003-1012.
  • [11] Massopust P., Ruch D., Van Fleet P., On the support properties of scaling function vectors, Texas A&M University, CAT Report 335, 1994.
  • [12] Palanismary K.R., Analysis and optimal control of linear systems via single-term Walsh series, Int. J. Systems Sci., Vol. 12, 1981, pp. 443-454.
  • [13] Razzaghi M., Optimal control of time varying linear systems via Fourier series, J. Optim. Theo. Appl., Vol. 65, 1981, pp. 375-384.
  • [14] Shih D.H., Kung F.C., Optimal control of deterministic systems via shifted Legendre polynomials, IEEE T. AC, Vol. 3, No. 5, 1986, pp. 451-454.
  • [15] So W., Wang J., Estimating the support of scaling vector, 1996.
  • [16] Strela V., Multiwavelets: Theory and Application, Ph.D. Thesis, MIT University, 1996.
  • [17] Yang C.Y., Chen C.K., Analysis and optimal control of time varying systems via Fourier series. Int. J. Syst. Sci., Vol. 25, 1994, pp. 1663-1678.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0033-0057
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.