PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A goal oriented approach to model identification of an industrial furnace system combining a priori knowledge and optimal estimation

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Prompted by the need to determine a unique tuning parameter, the paper proposes a conceptual model for a high temperature industrial furnace in which the notion of an unmeasurable "global temperature" plays a key role. The developed approach is designed to accommodate a priori knowledge of system nonlinearities, as well as the effects of an externally triggered burner firing cycle which gives rise to an oscillatory response present on the locally measured zone temperature. It is assumed that the variation in the global temperature is lower than that observed at the locally measured temperature at a point. The developed model is able to accommodate, and effectively separate, the effects of the combustion burner firing cycle and the underlying bilinear characteristic behaviour relating fuel combustion and temperature of each zone. It is assumed that these physical phenomena can be represented by a linear model, modelling the effects of the combustion burner firing cycle, cascaded with a bilinear model, where an intermediate variable is the global temperature. The result of employing a regularisation technique together with the cascade multiple model produces an optimal value for the tuning parameter of a four-term bilinear PID control system.
Czasopismo
Rocznik
Strony
103--110
Opis fizyczny
Bibliogr. 21 poz., wykr.
Twórcy
autor
  • Control Theory and Applications Centre, Coventry University Priory Street, Coventry, UK, ctac@coventry.ac.uk
Bibliografia
  • [1] Demoment G., Image reconstruction and restoration: Overview of common estimation structures and problems, IEEE Trans. Acoustics, Speech and Signal Processing, 37(12), 1989, pp. 2024-2036.
  • [2] Dunoyer A., Burnham K.J., Heeley A., Marcroft S., Control of continuously-operated high temperature furnaces, Proc. 1998 Int. Conf. Control, Swansea, UK, 1998, pp. 422-27.
  • [3] Dunoyer A., Burnham K.J., McAlpine T.S., Self-tuning control of an industrial pilot-scale reheating furnace: Design principles and application of a bilinear approach, IEE Proc. Control Theory and Applications, 144(1), 1997, pp. 25-31.
  • [4] Dunoyer A. P., Bilinear Self-tuning Control and Bilinearisation of Nonlinear Industrial Systems, PhD thesis, Coventry University, 1996.
  • [5] Fnaieh R, Ljung L., Recursive identification of bilinear systems, International Journal of Control, 45(2), 1987, pp. 453-470.
  • [6] Forssell U., Ljung L., Closed-loop identification revisited, Automatica, 35(7), 1999, pp. 1215-1241.
  • [7] Gabr M., Subba Rao T., On the identification of bilinear systems from operating records, International Journal of Control, 40(1), 1984, pp. 121-128.
  • [8] Goodhart S.G., Self-tuning Control of Industrial Systems, PhD thesis, Coventry Polytechnic, UK, 1991.
  • [9] Goodhart S.G., Bumham K.J., James D.J.G., Bilinear self-tuning control of a high temperature heat treatment plain, IEE Proc., Control Theory and Applications, 141(1), 1994, pp. 12-18.
  • [10] Ljung L., System Identification: Theory for the User, Prentice Hall PTR, New Jersey, USA, 2nd ed., 1999, ISBN 0-13-656695-2.
  • [11] Lootsma F.A., Numerical Methods for Non-linear Optimization, Academic Press London Ltd., London, U.K., 1971, ISBN 0-12-455650-7.
  • [12] Martineau S., Real-time results of a bilinear PID controller applied to an industrial furnace, Proc. UKACC Control 2002, Sheffield, UK, 2002, pp. 113-117.
  • [13] Martineau S., Burnham K.J., Haas O.C.L., Andrews G., Heeley A., Four-term bilinear PID controller applied to an industrial furnace, IFAC Journal, Control Engineering Practice, 12, 2003, pp. 457-464.
  • [14] Mohler R.R., Bilinear Control Processes: With Applications to Engineering, Ecology, and Medicine, New York, Academic Press, 1973, ISBN 0-12-504140-3.
  • [15] Mor’e J.J., Numerical Analysis, volume 630 of Lecture Notes in Mathematics, chapter The Levenberg-Marquardt algorithm: Implementation and theory, Berlin: Springer Verlag, 1978, pp. 106-116, ISBN 0-387-08538-6.
  • [16] Randall A., Burnham K.J., Cautious identification in self-tuning control: an information filtering alternative. Systems Science, 20(2), 1994, pp. 55-69.
  • [17] Rhine J.M., Tucker R.J., Modelling of Gas Fired Furnaces and Boilers, McGraw-Hill, London, UK, 1991.
  • [18] Turlach B.A., An even faster algorithm for ridge regression of reduced rank data. Computational Statistics & Data Analysis, 2004, pp. 1-17.
  • [19] Verdult V., Nonlinear system identification: a state-space approach, PhD thesis, Faculty of Applied Physics, University of Twente, Enschede, The Netherlands, 2002.
  • [20] Vinsonneau B., Martineau S., Burnham K.J., Goal oriented estimation of an industrial furnace to be controlled using bilinear PID, 15th Int. Conf. Systems Science, 3, 2004, pp. 430-436.
  • [21] Young P.C., Nonlinear and nonstationary signal processing, chapter Stochastic, dynamic modeling and signal processing: time variable and state dependent parameter estimation, Cambridge University Press, Cambridge, U.K., 2000, pp. 74-114.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0033-0043
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.