Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The robust H∞ control problem is considered for a class of uncertain neutral system involving both state and control input time-varying delays. The uncertainties under consideration are nonlinear time-varying parameter perturbations. The methodology is based on the Lyapunov functional combined with a unified LMI approach, and a new delay-dependent criterion is proposed to guarantee the stabilization and disturbance attenuation of systems. Moreover, a convex optimization approach is used to solve the robust H∞ control disturbance attenuation problem. Finally, a numerical example is illustrated to show the validity of this paper. The simulation results reveal significant improvement over the recent results.
Czasopismo
Rocznik
Tom
Strony
517--530
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
autor
autor
autor
- Department of Electronic Engineering, National Kinmen Institute of Technology, Jinning, Kinmen, Taiwan, 892, R.O.C.
Bibliografia
- BASER, U. (2003) Output feedback H∞ control problem for linear neutral systems: delay independent case. ASME J. Dynam. Systems Meas. Control 125, 177-185.
- BOYD, S., GHAOUI, L. EL, FERON, E. and BALAKRISHNAN, V. (1994) Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia, PA.
- CHEN, J.D. (2004A) Genetic Robust Controller Design for Uncertain Systems with Time-Delays in Both State and Control input via LMI Approach. J. Chin. Inst. Eng. 27, 1055-1061.
- CHEN, J.D. (2004B) Robust Control for Uncertain Neutral Systems with Time-Delays in State and Control Input via LMI and GAs. Appl. Math. Comput. 157, 535-548.
- FRIDMAN, E. and SHARED, U. (2003) Delay-dependent stability and H∞ control: constant and time-varying delays. Int. J. Control 76, 48-60.
- GAHINET, P., NEMIROVSKI, A., LAUB, A. and CHILALI, M. (1995) LMI Control Toolbox User’s Guide. The Mathworks, Natick, Massachusetts.
- GU, K. (2000) An integral inequality in the stability problem of time-delay systems. Proc. 39th IEEE CDC, Sydney, Australia, 2805-2810.
- HALE, J.K. and VERDUYN LUNEL, S. M. (1993) Introduction to Functional Differential Equations. Springer-Verlag, New York.
- HE, Y., WU, M., SHE, J.H. and LIU, G.P. (2004) Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays. Systems Control Lett. 51, 57-65.
- KOLMANOVSKII, V.B. and MYSHKIS, A. (1992) Applied Theory of Functional Differential Equations. Kluwer Academic Publishers, Netherlands.
- LI, X. and DE SOUZA, C.E. (1997) Delay-dependent robust stability and stabilization of uncertain linear delay systems: a linear matrix inequality approach. IEEE Trans. Automat. Control 42, 1144-1148.
- LIEN, C.H. and CHEN, J.D. (2003) Discrete delay-independent and discrete delay-dependent criteria for a class of neutral systems. ASME J. Dynam. Systems Meas. Control 125, 33-41.
- MOON, Y.S., PARK, P., KWON, W.H. and LEE, Y.S. (2001) Delay-dependent robust stabilization of uncertain state-delayed systems. Int. J. Control 74, 1447-1455.
- NIAN, X. and FENG, J. (2003) Guaranteed-cost control of a linear uncertain system with multiple time-varying Delays: an LMI Approach. IEE Proc. Control Theory Appl. 150, 17-22.
- ROH, Y.H. (2002) Robust Stability of Predictor-Based Control Systems with Delayed Control. Int. J. Syst. Sci. 33, 81-86.
- SU, N.J., SU, H.Y. and CHU, J. (2003) Delay-dependent robust H^ control for uncertain time-delay systems. IEE Proc. Control Theory Appl. 150, 489-492.
- SU, T.J., LU, C.Y. and TSAI, J.S.H. (2001) LMI approach to delay dependent robust stability for uncertain time-delay systems. IEE Proc. Control Theory Appl. 148, 209-212.
- XU, S., LAM, J. and YANG, C. (2002) Robust H∞ control for uncertain linear neutral delay systems. Optim. Control Appl. Methods 23, 113-123.
- YAKUBOVICH, V.A. (1977) S-procedure in nonlinear control theory. Vestnik Leningrad Univ. Math. 4, 73-93 [English translation].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0033-0018