PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Curvature of optimal control: Deformation of scalar-input planar systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Pontryagin Maximum Principle and high-order open-mapping theorems generalize elementary first-derivative tests to nonlinear optimal control. They provide necessary conditions for a trajectory-control-pair to be optimal, or sufficient conditions for local controllability. Sufficient conditions for optimality (and necessary conditions for nonlinear controllability) are harder to obtain. Like the Legendre-Clebsch condition, they generally take the form of tests for definiteness of second order derivatives. Recently, Agrachev introduced an attractive alternative by developing a notion of curvature of optimal control that generalizes classical Gauss (and Ricci) curvatures. This theory naturally applies to systems whose controls take values on a circle or sphere. In this article we present initial studies of how this notion of curvature provides insight into the limiting case when the circles become degenerate ellipses in the form of closed intervals. Of particular interest are well studied accessible, but uncontrollable, nonlinear systems, and systems that exhibit conjugate points, in which the control takes values in a closed interval u = (u1, u2) ∈ [-1,1] x {0} ⊆ R². We focus on systems that are well-known models for the analysis of small-time local controllability and time-optimal control.
Słowa kluczowe
Rocznik
Strony
353--367
Opis fizyczny
Bibliogr. 14 poz., wykr.
Twórcy
autor
  • Department of Mathematics and Statistics Arizona State University Tempe, AZ 85287, USA
Bibliografia
  • AGRACHEV, A., CHTCHERBAKOVA, N., and ZELENKO, I. (2005) On curvatures and focal points of dynamical Lagrangian distributions and their reductions by first integrals. J. Dynamical and Control Systems 11, 297-327.
  • AGRACHEV, A. and SACHKOV, Yu. (2004) Control Theory from the Geometric Viewpoint. Springer, Berlin.
  • AGRACHEV, A. and SHCHERBAKOVA, N. (2005) Hyperbolicity of Hamiltonian systems of negative curvature. Dokl. Akad. Nauk 400, 295-298.
  • BIANCHINI, R., and KAWSKI, M. (2003) Needle variations that cannot be summed. SIAM J. Control Optim. 42, 218-238.
  • CHITOUR, Y. and SIGALOTTI, M. (2005) On the controllability of the Dubins problem for surfaces. J. Geom. Anal. 15, 565-587.
  • GEHRIG, E. and KAWSKI, M. (2004) Visualizing the curvature of optimal control, http: //math. asu. edu/~kawski/MATLAB/ control/curvature, html.
  • HERMES, H. (1967) Attainable sets and generalized, geodesic spheres. J. Diff. Eqs. 3, 256-270.
  • SCHATTLER, H. (1990) Regularity properties of optimal trajectories: Recently developed techniques. Monogr. Textbooks Pure Appl. Math. 133, 351-381.
  • SERRES, U. (2006) The curvature of 2-dimensional optimal control systems and Zermelo’s navigation problem. J. Math. Sciences 135, 3224-3243.
  • SIGALOTTI, M. AND CHITOUR, Y. (2006) Dubins’ problem on surfaces. II. Nonpositive curvature. SIAM J. Control Optim. 45, 457-482.
  • SUSSMANN, H. (1986) Envelopes, conjugate points and optimal bang-bang extremals. Math. Appl. 29, 325-346.
  • SUSSMANN, H. (1989) Envelopes, high-order optimality conditions and Lie brackets. Proc. 28th IEEE Conf. Decision Control, 1107-1112.
  • SUSSMANN, H. (2002) High-order open mapping theorems. Lect. Notes Control Inform. Sci. 286, 293-316.
  • SUSSMANN, H. (2004) Generalized differentials, variational generators, and the maximum principle with state constraints. Lect. Notes Math. 1932, 221-284.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0031-0073
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.