Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
For a prime p > 2, an integer a with gcd(a,p) = 1 and real 1 ≤ X,Y < p, we consider the set of points on the modular hyperbola Ηa,p(X,Y) = {(x,y) : x,y ≡ a (mod p), 1 ≤ x ≤ X, 1 ≤ y ≤ Y}. We give asymptotic formulas for the average values (x,y)∈ ... [wzór] with the Euler function φ(k) on the difference between the components of points of Ηa,p(X,Y).
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
1--7
Opis fizyczny
Bibliogr. 6 poz.
Twórcy
autor
- Department of Computing, Macquarie University, North Ryde, NSW 2109, Australia, igor@ics.mq.edu.au
Bibliografia
- [1] M. Drmota and R. F. Tichy, Sequences, Discrepancies and Applications, Springer, Berlin, 1997.
- [2] K. Ford, M. R. Khan, I. E. Shparlinski and C. L. Yankov, On the maximal difference between an element and its inverse in residue rings, Proc. Amer. Math. Soc. 133 (2005), 3463-3468.
- [3] H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc., Providence, RI, 2004.
- [4] M. R. Khan and I. E. Shparlinski, On the maximal difference between an element and its inverse modulo n, Period. Math. Hungar. 47 (2003), 111—117.
- [5] I. E. Shparlinski, Distribution of inverses and multiples of small integers and the Sato-Tate conjecture on average, Michigan Math. J., to appear.
- [6] I. E. Shparlinski and A. Winterhof, Distances between the points on modular hyperbolas, J. Number Theory, to appear.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0029-0001