PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dead-time compensation in discrete time control

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Most industrial processes are characterized by the presence of time delays. These time delays may be intrinsic to the process to be controlled or associated to the controller itself. The Smith Predictor scheme was the most famous control method for controlling stable single-input-single-output linear processes showing a delay in their input or output. Solution to the problems related to robustness as well as those involved in the control of integrating and unstable delayed processes were presented. Most of these solutions do not cover all the situations and, in any case, they lead to complex controllers. This paper reviews the most relevant problems and their solutions in the literature, and a new methodology to design dead-time compensator for stable, integrating and unstable processes is reported. Several illustrative examples show that the robustness and performance of the proposed methodology are similar or better than the more recently proposed dead-time compensators, the design approach being simple and straightforward.
Czasopismo
Rocznik
Strony
13--20
Opis fizyczny
Bibliogr. 25 poz., wykr.
Twórcy
autor
autor
  • Department of Systems Engineering and Control, Universidad Politecnica de Valencia, P.O. Box 22012, E-46071 Valencia, Spain, pedro@isa.upv.es
Bibliografia
  • [1] Astrom K.J., Hagglund T., Advanced PID Control, ISA - The Instrumentation, Systems, and Automation Society, Research Triangle Park, NC 27709, 2005.
  • [2] Astrom K.J., Wittenmark B., Computer-controlled systems -theory and design, 3rd ed., Prentice-Hall, Englewood Cliffs, NJ, 1997.
  • [3] Garcia P., Albertos P., Hagglund T., Control of unstable non-minimum-phase delayed systems, Journal of Process Control, Vol. 16, 2006, pp. 1099-1111.
  • [4] Gu K., Niculescu S.I., Survey on Recent Results in the Stability and Control of Time-Delays Systems, Journal of Dynamic Systems Measurement and Control, Vol. 125, 2003, pp. 158-165.
  • [5] Hagglund T., An industrial dead-time compensating PI controller, Control Engineering Practice, Vol. 4, 1996, pp. 749-756.
  • [6] Lee Y., Lee J., Park S., PID controllers timing for integrating and unstable process with time delay, Chem. Eng. Sci,, 55, 2000, pp. 3481-3493.
  • [7] Lee Y., Lee J., Park S., IMC-based control system design for unstable process, Ind. Eng. Chem. Res., 41, 2002, pp. 4288-4294.
  • [8] Liu T., Zhang W., Gu D., Analytical design of two-degree-of-freedom control scheme for open-loop unstable processes with delay, Journal of Process Control, 15, 2005, pp. 559-572.
  • [9] Lu X., Yang Y.-S., Wang Q.-G., Zheng W.-X., A double two-degree-of-freedom control scheme for improved control of unstable delay processes, Journal of Process Control, 15, 2005, pp. 605-614.
  • [10] Majhi S., Atheiton D.P., Obtaining controller parameters for a new Smith Predictor using autotuning predictor and its modifications, Automatica, 36, 2000, pp. 1651-1658.
  • [11] Matausek M.R., Micié A.D., A Modified Smith Predictor for Controlling a Process with an Integrator and Long Dead-Time, IEEE Trans. Automatic Control, 41, 1996, pp. 1199-1203.
  • [12] Matausek M.R., Micié A.D., On the modified Smith Predictor for Controlling a Process with an Integrator and Long Dead-Time, IEEE Trans. Automatic Control, 44, 1999, pp. 1603-1606.
  • [13] Normey-Rico J.E., Bordons C., Camacho E.F., Improving the robustness of dead-time compensating PI controllers, Control Eng. Practice, 5,1997, pp. 801-810.
  • [14] Normey-Rico J.E., Camacho E.F., Robust Tuning of Dead-Time Compensators for Processes with an Integrator and Long Dead-Time, IEEE Trans. Automatic Control, 44, 1999, pp. 1597-1603.
  • [15] Palmor Z.J., Time delay compensation - Smith predictor and its modifications, [in:] W.S. Levine (ed.), The Control Handbook, CRSC Press, 1996.
  • [16] Palmor Z., Halevi Y., Robustness properties of sampled-data systems with dead time compensators, Automatica, 26, 1990, pp. 637-640.
  • [17] Richard J.P., Time-delay systems: an overview of some recent advances and open problems, Automatica, Vol. 39, 2003, pp. 1667-1694.
  • [18] Smith O.J.M., Closer control of loops with dead time. Chemical Engineering Progress, Vol. 53, 1959, pp. 217-219.
  • [19] Tan W., Marquez H.J., Chen T., IMC-based design for unstable processes with time delays, Journal Process Control, 13, 2003, pp. 203-213.
  • [20] Torrico B.C., Normey-Rico J.E., 2DOF discrete dead-time compensators for stable and integrative processes with dead-time, Journal of Process Control, 15, 2005, pp. 341-352.
  • [21] Wang Q.-G., Zhou H.-Q., Zhang Y., Zhang Y., A Comparative Study on Control of Unstable Processes with Time Delay, 5th Asian Control Conf., Melbourne, Australia, 2004, pp. 2006-2014.
  • [22] Watanabe K., Ito M., A process model control for linear systems with delay, IEEE Trans. Automatic Control, Vol. 26, 1981, pp. 1261-1268.
  • [23] Zhong Q.-C., Normey-Rico J., Control of integral processes with dead-time. Part 1: Disturbance observer-based 2 DOF control scheme, Control Theory and Applications, IEEE Proc., 149 (4), 2002, pp. 285-290.
  • [24] Zhong Q.-C., Li H.-X., 2-degree-of-freedom Proportional-Integral-Derivative-type controller incorporating the Smith principle for processes with dead time, Ind. Eng. Chem. Res., 41,2002, pp. 2448-2454.
  • [25] Zhong Q.-C., Control of integral processes with dead time. Part 3. Deadbeat disturbance response, IEEE Trans. Automatic Control, 48 (1), 2003, pp. 153-159.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0027-0105
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.