Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Recent developments with Neural Networks produced models which are capable of encoding graph structured data. The most promising and arguably the most capable of these methods are the Graph Neural Networks (GNNs). This paper considers the GNN for the application to recommender system learning problem. It will be shown that the GNN can generally exploit relational information in such a graph structured domain but experiments also revealed some interesting limitations of the GNN. Experiments were conducted on a relatively large set o real world data from MovieLens. The dataset that has been widely used as a benchmark problem. The careful analysis of these data led to the discovery of some intriguing properties which helped to explain the problems and limitations of the GNN when dealing with this learning problem.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
17--26
Opis fizyczny
Bibliogr. 18 poz., wykr.
Twórcy
autor
autor
autor
autor
autor
- Dipartimento di Ingegneria dell'Informazione, University of Siena, Via Roma, 56, Siena, Italy, augusto@dii.unisi.it
Bibliografia
- [1] Almeida L., A Learning Rule for Asynchronous Perceptrons with Feedback in a Combinatorial Environment, IEEE Int. Conf. Neural Networks, M. Caudill, C. Butler (eds.), Vol. 2. San Diego, 1987: IEEE, New York, 1987, pp. 609-618.
- [2] Barabasi A.L., Albert R., Emergence of Scaling in Random Networks, Science, 286, 1999, pp. 509-512.
- [3] Bianchini M., Mazzoni P., Sarti L., Scarselli F., Face spotting in color images using recursive neural networks, Proc. 1st ANNPR Workshop, Florence, Italy, September 2003.
- [4] Fouss F., Pirotte A., Saerens M., A Novel Way of Computing Dissimilarities between Nodes of a Graph, with Application to Collaborative Filtering, 15th European Conf. Machine Learning (ECML 2004), Proc. Workshop on Statistical Approaches for Web Mining (SAWM), pp. 26-37.
- [5] Goldberg K., Roeder T., Gupta D., Perkins C., Eigentaste: A constant time collaborative filtering algorithm, Information Retrieval, 4(2), 2001, 133-151.
- [6] Golub G.H., Loan C.F.V., Matrix computations (3rd ed.), Johns Hopkins University Press, Baltimore, MD, USA 1996.
- [7] Gori M., Hagenbuchner M., Scarselli F., Tsoi A.C., Graphical-based Learning Environment for Pattern Recognition, Proc. SSPR 2004 (Syntactic and Structural Pattern Recognition), August 2004, invited paper.
- [8] Gori M., Maggini M., Sarti L., A recursive neural network model for processing directed acyclic graphs with labeled edges, Proc. Int. Joint Conf. Neural Networkss, Portland, USA, July 2003, pp. 1351-1355.
- [9] Khamsi M. A., An Introduction to Metric Spaces and Fixed Point Theory, John Wiley & Sons Inc, 2001.
- [10] Miller B., Riedl J., Konstan J., GroupLens for Usenet: Experiences in applying collaborative filtering to a social information system, [in:] C. Leug, D. Fisher (eds.), From Usenet to CoWebs: Interacting with Social Information Spaces, Springer-Verlag, 2002.
- [11] Page L., Brin S., Motwani R., Winograd T., The pager-ank citation ranking: Bringing order to the web, Proc. ASIS `98, Pittsburgh, USA 1998.
- [12] Pineda F., Generalization of Back-propagation to Recurrent Neural Networks, Physical Review Letters, Vol. 59, 1987, pp. 2229-2232.
- [13] Sarwar B.M., Karypis G., Konstan J.A., Riedl J., Item-based collaborative filtering recommendation algorithms, Proc. 10th Int. World Wide Web Conf. (WWW 10), Hong Kong, May 2001.
- [14] Sarwar B., Karypis G., Konstan J., Riedl J., Recommender systems for large-scale e-commerce: Scalable neighborhood formation using clustering, Proc. Fifth Int. Conf. Computer and Information Technology, 2002.
- [15] Scarselli F., Ah Chung Tsoi, Gori M., Hagenbuchner M., A new neural network model for graph processingTechnical Report, Department of Information Engineering, University of Siena (DII 01/05), 2005.
- [16] Schafer J., Konstan J., Riedl J., Electronic commerce recommender applications, Data Mining and Knowledge Discovery, January 2001.
- [17] Shardanand U., Maes P., Social Information Filtering: Algorithms for Automating “Word of Mouth”, Proc. CHI 95, Denver 1995.
- [18] Sperduti A., Starita A., Supervised neural networks for the classification of structures, IEEE Trans. Neural Networks, Vol. 8, pp. 429-459, 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0027-0082