OKREŚLANIE KONCENTRACJI AZOTU W MONOKRYSZTAŁACH KRZEMU OTRZYMYWANYCH METODĄ CZOCHRALSKIEGO NA PODSTAWIE WIDM ABSORPCYJNYCH W ZAKRESIE DALEKIEJ PODCZERWIENI

Małgorzata Możdżonek¹, Piotr Zabierowski¹, Bogdan Majerowski¹

Monokryształy krzemu otrzymane metodą Czochralskiego (Cz - Si) domieszkowano azotem poprzez wzrost w atmosferze Ar + N₂. Wykonując pomiary absorpcji optycznej po izotermicznych wygrzewaniach zbadano proces generacji płytkich donorów termicznych (STDs) związanych z kompleksami N_i-O_{mi}. Określono warunki procesów termicznych, w których koncentracja defektów ulega nasyceniu (650° C min. 1godz. lub 600°C min. 3 godz.). Przedstawiono metodę określania koncentracji azotu w monokryształach Cz – Si w zakresie 1 x $10^{13} \le [N] < 5 x 10^{14}$ at.cm⁻³ opartą o pomiar absorpcji w zakresie dalekiej podczerwieni w niskich temperaturach.

1. WSTĘP

W obecnie stosowanych technologiach wytwarzania elementów półprzewodnikowych, domieszkowanie azotem monokryształów krzemu wytwarzanych metodą Czochralskiego (Cz – Si) jest bardzo obiecujące. Pozwala ono bowiem zwiększyć stopień precypitacji tlenu powodując wzrost koncentracji wytrąceń tlenowych przy jednoczesnym zmniejszeniu ich rozmiarów [1]. Efekt ten, to wynik dużej koncentracji stabilnych temperaturowo zarodków do precypitacji obecnych w kryształach domieszkowanych azotem. Jest to szczególnie ważne w przypadku podłoży typu p oraz płytek krzemowych o dużych średnicach , gdzie wydajność geterowania jest słaba. Innym efektem domieszkowania kryształów Cz - Si azotem jest kontrola kon-

Instytut Technologii Materiałów Elektronicznych, ul. Wólczyńska 133, 01-919 Warszawa, e-mail: e-mail: malgorzata.mozdzonek@itme.edu.pl

centracji i wielkości defektów będących skupiskami wakansów (voids). Powodują one degradację struktur MOS, a w zależności od metody ich ujawnienia oznaczane są jako defekty: COPs (crystal originated pits), FPDs (flow pattern defects), LSTD (laser-scattering tomography defects) [2]. Płytki krzemowe domieszkowane azotem mają również lepsze własności mechaniczne [3, 17].

Azot jest pierwiastkiem lekkim, a jego rozpuszczalność w kryształach krzemu jest o kilka rzędów mniejsza niż tlenu lub węgla i wynosi 4.5 x 10¹⁵ at.cm⁻³ [4]. Pomiary koncentracji azotu [N] w kryształach krzemu wykonywane są głównie dwiema metodami: metoda spektrometrii mas jonów wtórnych (SIMS - Secondary Ion Mass Spectroscopy) oraz metodą fourierowskej spektroskopii absorpcyjnej w podczerwieni (FTIR spectroscopy-Fourier Transform Infrared Spectroscopy). Metoda SIMS pozwala na określenie całkowitej koncentracji azotu w krysztale krzemu, niezależnie od położenia atomów azotu w sieci krystalicznej i tworzonych przez te atomy kompleksów z defektami rodzimymi lub z atomami innych pierwiastków, a poziom wykrywalności azotu tą metodą wynosi ~1x1014 at/cm3. Metoda spektroskopii FTIR oparta jest o aktywne w podczerwieni mody drgań wiązań, w skład których wchodzą atomy azotu. Linie absorpcyjne świadczące o obecności wiązań N-N i N-O można obserwować w dwóch zakresach spektralnych. W zakresie średniej podczerwieni (MIR) pomiędzy 700 i 1000 cm-1 występują linie absorpcyjne lokalnych modów drgań (LVMs – *localized vibrational modes*) [5-6], a w zakresie dalekiej podczerwieni (FIR) pomiędzy 190 i 290 cm⁻¹ linie absorpcyjne stanów wzbudzonych kompleksów (N_i-O_{mi}) [7-8].

W kryształach krzemu, azot występuje głównie w postaci pary międzywęzłowej N.-N. Konfiguracja ta jest bardziej stabilna niż pojedynczy atom azotu w pozycji międzywęzłowej lub węzłowej [6-7]. Badania wykazują jej stabilność aż do 1270°C [2]. W widmach absorpcyjnych uzyskanych z pomiarów w 300 K dla kryształów krzemu domieszkowanych azotem otrzymanych metodą topienia strefowego (FZ), występują w zakresie MIR dwie linie absorpcyjne położone przy 963 cm⁻¹ oraz 766 cm⁻¹, pochodzące od lokalnego modu drgającego (LVM) związanego z parą N.-N. [5,11,14]. W przypadku kryształów Cz – Si pary N.-N. oddziałują z atomami tlenu tworząc z nimi kompleksy. Dlatego też, w kryształach Cz - Si intensywności linii 963 cm⁻¹ i 766 cm⁻¹ są znacznie mniejsze. Obserwuje się natomiast dodatkowe linie absorpcyjne LVM pochodzące od kompleksów azot-tlen o liczbach falowych: 996 cm⁻¹ i 1026 cm⁻¹ (N-N-O) oraz 1018 cm⁻¹ (N-N-O-O) i 1026 cm⁻¹ (N najbliższy sąsiad Si-O) [6,15]. Defekty te są nieaktywne elektrycznie. W zakresie FIR występuje szereg linii absorpcyjnych pochodzących od defektów, które wpływają na parametry elektryczne kryształów Si. Dokładna struktura tych kompleksów nie jest jeszcze znana. Najbardziej prawdopodobny model to kompleks (N_i-O_{mi}), jeden międzywęzłowy atom azotu z m międzywęzłowymi atomami tlenu, gdzie m = 1,2,3,4 [8,12]. W niskotemperaturowych (LT - low temperature) pomiarach absorpcyjnych zachowują się one jak płytkie donory termiczne (STDs – Shallow Thermal Donors) [7].

Koncentrację azotu [N] w monokryształach krzemu FZ określa się z pomiarów absorpcyjnych w temperaturze 300 K w oparciu o linię absorpcyjną 963 cm⁻¹ [9,14]. W monokryształach Cz - Si azot tworzy kompleksy, aby więc określić koncentrację należy uwzględnić jego obecność w różnych wiązaniach. W pomiarach absorpcyjnych wykonywanych w temperaturze pokojowej przy wyznaczaniu [N] uwzględnia się wymienione powyżej linie absorpcyjne z zakresu MIR [10-11]. Poziom wykrywalności tą metodą to [N] > 5 x 10¹⁴ at.cm⁻³. Niższą koncentrację azotu można określić z niskotemperaturowych pomiarów absorpcyjnych (LT-FTIR).

W artykule przedstawione zostaną wyniki prac prowadzonych przez autorów nad otrzymaniem kryształów krzemu metodą Czochralskiego domieszkowanych azotem (NCZ) oraz opracowaniem metody określania koncentracji azotu.

2. DOMIESZKOWANIE KRYSZTAŁÓW KRZEMU AZOTEM

Domieszkowanie azotem kryształów Cz - Si można przeprowadzić dwoma sposobami: poprzez wzrost kryształu w atmosferze z domieszką gazowego N₂ lub poprzez włożenie do wsadu azotku krzemu (Si₃N₄). W naszym przypadku domieszkowanie azotem kryształów Si wykonano według pierwszej metody. Kryształy wzrastały więc w atmosferze Ar + N₂. Procentowy udział azotu wynosił 6 lub 12% objętości przy ciśnieniu gazów w komorze 17 x 10² Pa. Rys. 1 przedstawia zastosowany układ

Rys. 1. Schemat układu do domieszkowania kryształów krzemu CZ azotem: 1,3,6 - zawór, 2 - przepływomierz, 4 – reduktor, 5 – filtr, 7 – butla z azotem.

Fig. 1. A schematic drawing of the arrangement for nitrogen-doping of the CZ silicon crystals: 1,3,6 – valve, 2 – flow meter, 4 – pressure regulator, 5 – filter, 7 – nitrogen cylinder.

domieszkujący. Badane kryształy posiadały orientację krystalograficzną <100> i były domieszkowane również borem lub fosforem oraz bez dodatkowej domieszki. Parametry otrzymanych kryształów zamieszczone są w Tab. 1.

Tabela 1. Zestawienie parametrów otrzymanych kryształów.**Table 1.** Main properties of the grown crystals.

Oznaczenie	Śred- nica [mm]	Orientacja krystal.	Do- miesz- ka	Rezystyw- ność [Ωcm]	Koncent. O _i [x10 ¹⁷ at.cm ⁻³]	Koncent.C _s [at.cm ⁻³]	Dłu- gość [mm]
NCZ 75	51	<100>	В	7,0 - ,10,0	5,3 - 6,7	<1 x 10 ¹⁶	2070
NCZ 77	76	<100>	Р	2,3 - 7,3	6,1 - 7,3	<1 x 10 ¹⁶	1425
NCZ 83A	76	<100>	ND*	183 - 461	6,3 – 7,3	<1 x 10 ¹⁶	660

* - kryształ niedomieszkowany

3. OKREŚLENIE KONCENTRACJI AZOTU

3.1. Przygotowanie próbek

Próbki o wymiarach 20 x 20 x 5 mm wycięte z różnych miejsc wzdłuż kryształów wytrawiono w celu uzyskania powierzchni wypolerowanej, o jakości odpowiedniej do pomiarów optycznych. Pomiary absorpcji w podczerwieni przeprowadzono przy użyciu spektrofotometru fourierowskiego firmy Bruker typ IFS 113v w zakresie widmowym 450-180 cm⁻¹ ze zdolnością rozdzielczą 0,5 cm⁻¹, w temperaturze 12 K. Badane próbki, były zmierzone bezpośrednio po wycięciu oraz po obróbkach termicznych przeprowadzonych w temperaturach 600°C i 650°C w atmosferze N₂. Czas wygrzewania wynosił od 0,5 do 6,0 godzin. Wg autorów pracy [17] współczynnik dyfuzji azotu w krzemie wynosi 4 x 10⁻¹¹ cm²s⁻¹ dla temperatury 750°C. W czasie 6 godz. wygrzewania w temperaturze 650°C azot wnika więc na głębokość ~ 14 μ m, co nie wprowadza błędu w ocenie koncentracji N. W czasie pomiarów próbki były dodatkowo oświetlone światłem o energii powyżej przerwy zabronionej w celu skompensowania par donor-akceptor. Próbki pochodzące z kryształów Si domieszkowanych borem zmierzone zostały również bez dodatkowego oświetlenia. Tak otrzymane widma absorpcyjne odjęto następnie od widm z podświetleniem. W ten sposób usunięta została linia absorpcyjna 245 cm⁻¹ pochodząca od boru. Koncentrację tlenu określono z pomiarów absorpcyjnych w temperaturze 300 K wg procedury ASTM F 121-83 stosując współczynnik 2,45 x 1017 cm-2. Pomiary rezystywności wykonane zostały za pomocą sondy czteroostrzowej, zgodnie z normą ASTM F 43-83.

3.2. Wyniki badań i ich analiza

Jak już zostało wspomniane we wstępie, w kryształach Cz – Si:N azot występuje w postaci pary N_i-N_i oraz kompleksów N-O. Aby ocenić całkowitą koncentrację [N] należy więc ustalić warunki termodynamicznej równowagi w próbce [8,15]. Można to uzyskać poprzez odpowiednio długie wygrzewanie w określonej temperaturze, aż do wystąpienia nasycenia wiązań N-O, czyli osiągnięcia równowagi pomiędzy atomami azotu i tlenu. Rys. 2 prezentuje widmo absorpcyjne w zakresie FIR uzyskane dla próbki wygrzanej w 600°C przez 3 godz. w czasie którego powstały kompleksy defektowe typu N_i-O_{ni} (STD). W widmie tym występują wszystkie dotychczas wyznaczone linie [8-9], obrazujące stany wzbudzone tych kompleksów. Maksimum intensywności linii obserwowane jest dla temperatury ~650°C [12]. W temperaturach $> 700^{\circ}$ C kompleksy N_i-O_{ni} ulegają rozpadowi i powstają dimery (N_i - N_i) [2]. Gdy koncentracja azotu była $[N] \ge 10^{14}$ at.cm⁻³, to najintensywniejsze linie absorpcyjne widoczne były już w próbkach mierzonych bezpośrednio po otrzymaniu kryształu, dla koncentracji niższych ujawniały się dopiero po obróbkach termicznych. W niektórych widmach występowały również linie absorpcyjne pochodzące od donorów tlenowych typu NTD (New Thermal Donors). W czasie wygrzewania przez 1 godz. ulegały one anihilacji.

Rys. 2. Widmo absorpcyjne kompleksów N-O otrzymane w 12 K. Koncentracja azotu 8,6 x 10¹⁴ at.cm⁻³.

Fig. 2. FIR absorption spectrum due to N-O complexes at 12 K. The nitrogen concentration was $8,6 \ge 10^{14}$ at.cm⁻³.

W otrzymanych widmach absorpcyjnych największą intensywność mają linie 240,4 cm⁻¹ i 249,8 cm⁻¹ odpowiadające przejściom $1s \rightarrow 2p_{\pm}$. Wraz ze wzrostem koncentracji azotu intensywności wszystkich linii rosną. Zależność nasycenia danego kompleksu N-O od czasu wygrzewania w temperaturze 650°C zamieszczono na Rys. 3, a dla temperatury 600°C na Rys. 4. Do analizy danych przyjęto intensywność integralną (powierzchnia pod krzywą absorbancji) poszczególnych linii, która została znormalizowana dla próbek o grubości 1 mm. Badane próbki wycięte były z kilku miejsc wzdłuż kryształów i posiadały różną koncentrację azotu oraz tlenu.

Jak widać na Rys. 4, dla temperatury 650°C stan równowagi termodynamicznej dla większości badanych próbek został osiągnięty już po wygrzewaniu przez 1godz. Tylko dla próbki 75DII, wyciętej z końcowej części kryształu wystąpił po 1,5 godz. W przypadku wygrzewania w temperaturze 600°C (Rys. 4) maksimum absorbancji linii 249,8 cm⁻¹ i 240,4 cm⁻¹ osiągnięto dopiero po 3 lub 6 godzinach wygrzewania. Otrzymane wyniki pokazują, że czas wygrzewania potrzebny do osiągnięcia stanu równowagi termodynamicznej zależy od koncentracji azotu oraz temperatury wy-

Rys. 3. Intensywność integralna linii absorpcyjnych: 249,8 cm⁻¹ (a) i 240,4 cm⁻¹ (b), znormalizowana dla próbki o grubości 1 mm, w funkcji czasu wygrzewania w temperaturze 650°C. **Fig. 3.** Integrated absorbance at 249,8 cm⁻¹ (a) and 240,4 cm⁻¹ (b) as a function of the annealing time at 650°C. The integrated absorbance is normalized to 1 mm sample thickness.

grzewania. Dla próbek pochodzących z końcowej części kryształów (75DII, 77DII), gdzie koncentracja azotu jest największa, jest on dla obu temperatur najwyższy.

Rys. 4. Intensywność integralna linii absorpcyjnych: 249,8 cm⁻¹ (a) i 240,4 cm⁻¹ (b) znormalizowana dla próbki o grubości 1 mm, w funkcji czasu wygrzewania w temperaturze 600°C. **Fig. 4.** Integrated absorbance at 249,8 cm⁻¹ (a) and 240,4 cm⁻¹ (b) as a function of the annealing time at 600°C. The integrated absorbance is normalized to 1 mm sample thickness.

Na Rys. 5 pokazane są przykładowe widma otrzymane dla temperatur wygrzewania 600°C i 650°C. Widoczne jest, że dla temperatury 600°C intensywność linii 240 cm⁻¹ jest większa od intensywności linii 249 cm⁻¹. Natomiast dla temperatury 650°C sytuacja jest odwrotna. Międzywęzłowe atomy azotu N_i łączą się z międzywęzłowymi atomami tlenu O_i, tworząc kompleksy defektowe o składzie N_i-O_{mi}, gdzie m = 1,2,3,4. Obliczenia teoretyczne wykonane w pracy [15] pokazują, że kompleks (N_i-O_{2i}) z jednym atomem azotu i dwoma atomami tlenu znajdującymi się w płaszczyźnie (110) jest najbardziej stabilny. Według H. Alt i współautorów [8] linia 249,8 cm⁻¹ (N-O-5) pochodzi od kompleksów o składzie N_i-O_{2i} , natomiast linia 240,4 cm⁻¹ (N-O-3) od kompleksów N_i-O_{3i} . Przyjmując te założenia można stwierdzić, że w próbkach pochodzących z kryształu NCZ 75 (Tab. 1) wygrzewanych w temperaturze 650°C więcej jest kompleksów typu N_i-O_{2i} niż typu N_i-O_{3i} , podczas gdy w próbkach wygrzewanych w temperaturze 600°C przeważają kompleksy N_i . O_{3i} . Może to być właściwością danej obróbki termicznej lub wynikać z poziomu koncentracji tlenu w danym krysztale Si. W tym przypadku koncentracja tlenu w próbkach z temperatury 650°C była trochę niższa (5,3-6,7 x 10¹⁷ at.cm⁻³) od próbek z temperatury 600°C (6-7,3 x 10¹⁷ at.cm⁻³).

Rys. 5. Przykładowe widma absorpcyjne otrzymane dla wygrzewań w temperaturze 600°C i 650°C. Próbki różniły się koncentracją azotu.

Fig. 5. Typical infrared absorption spectra obtained for samples annealed at 600°C and 650°C. N concentration in samples was different.

Powstające termodonory wpływają oczywiście na parametry elektryczne krzemu. Pomiary rezystywności wykonane na badanych próbkach po kolejnych procesach termicznych pokazują zmianę rezystywności z czasem wygrzewania. W przypadku kryształów typu n (Rys. 6) rezystywność malała wraz ze wzrostem koncentracji termodonorów, a dla typu p rosła. Znaczne zmiany rezystywności widoczne dla niektórych próbek po wygrzewaniu 1 godz., to wynik anihilacji termodonorów tlenowych (NTD), które tworzą się w czasie wzrostu kryształów krzemu CZ.

M. Możdżonek, P. Zabierowski, B. Majerowski

Rys.7. Zmiany rezystywności w funkcji czasu wygrzewania w temperaturze 600°C dla kryształów krzemu typu n: a/ NCZ 77, b/ NCZ 83.

Fig.7. Resistivity as a function of the annealing time at 600°C for n-type silicon crystals a/ NCZ 77, b/ NCZ 83.

W uzyskanych widmach absorpcyjnych (Rys. 2, 5) intensywności linii 240,4 cm⁻¹ i 249,8 cm⁻¹ są znacznie większe niż linii pozostałych. Te dwie linie zostały też użyte do określania koncentracji azotu w kryształach Cz - Si. Z powodu braku możliwości wykonania pomiarów porównawczych metodą SIMS (zbyt niska koncentracja azotu) i przeprowadzenia kalibracji wyników, do obliczeń wykorzystano zależności z prac [12-13]. Wg V.Voronkov'a [12] zależność pomiędzy koncentracją kompleksów N_i - O_{mi} , czyli koncentracją termodonorów STD ([N_s]) a ilością azotu w kryształe krzemu nie jest liniowa lecz $[N_s]$ jest raczej proporcjonalne do $[N]^{1/2}$. Koncentrację STD można wyznaczyć z równania [12]:

$$[N_{..}] \approx (k_{..} + k_{..}) \ge 5 \times 10^{13} \text{ cm}^{-3}$$
 (1)

gdzie: k,, k, -współczynniki absorpcji dla linii 240,4 cm⁻¹ i 249,8 cm⁻¹.

W przypadku, gdy w wyniku odpowiednio długiego wygrzewania osiągnie się maksymalną koncentrację STD, to całkowitą koncentrację azotu opisuje wzór [12]:

$$[N] = [N_{a}] + [N_{a}]^{2}/R$$
(2)

gdzie: *R* - stała zależna od koncentracji tlenu i temperatury wygrzewania.

Dla temperatur 600°C i 650°C wartości *R* wynoszą odpowiednio 5 x 10¹⁴ cm⁻³ i 5,7 x 10¹³ cm⁻³ dla $[O_i] \approx 7 \times 10^{17}$ at.cm⁻³.

Zależność pomiędzy koncentracją termodonorów a czasem wygrzewania jaką otrzymano dla kryształu krzemu NCZ 77 pokazuje Rys. 7. Widoczne jest, że $[N_s]$ rośnie z czasem wygrzewania aż do momentu osiągnięcia nasycenia.

Fig. 7. Dependence of the shallow thermal donors (STDs) concentration on the annealing time at 600°C.

M. Porrini i współautorzy [13] badali próbki o koncentracji azotu z zakresu 5 x $10^{12} - 2$ x 10^{15} at.cm⁻³ określonej z pomiarów metodą SIMS i wyznaczyli zależność umożliwiającą określenie koncentracji azotu w kryształach Cz - Si z intensywności integralnej, bez konieczności wyznaczania parametru *R*. Zależność ta określona jest równaniem:

$$[N] = (0,309A^2 + 0,083A) \times 10^{16} \text{ (at.cm}^{-3})$$
(3)

gdzie: *A* jest sumą intensywności integralnych linii 240,4 cm⁻¹ i 249,8 cm⁻¹dla próbek o grubości 1 mm.

Koncentrację azotu obliczoną wg powyższego równania w funkcji intensywności integralnej zamieszczono na Rys. 8. Zależność pomiędzy koncentracją azotu określoną wg równania (3), a czasem wygrzewania w danej temperaturze prezentuje Rys. 9. Wyznaczona koncentracja [N] zależy od czasu wygrzewania, co ilustrują uzyskane wyniki. Niższe koncentracje azotu otrzymane dla próbek z kryształu NCZ 75 po wygrzewaniu przez 1,5 godz. w 650°C, odpowiadają występującym zmianom oporności. Może to więc świadczyć o zmianach zachodzących w strukturze kompleksów N_i - O_{mi} podczas wygrzewania próbek. Pełniejsze wyjaśnienie tego zjawiska wymaga przeprowadzenia badań dla większej ilości próbek. Aby prawidłowo określić koncentrację azotu w kryształach krzemu Cz – Si:N, należy badane próbki poddać odpowiednio długiemu wygrzewaniu, które zapewni powstanie maksymalnej ilości kompleksów N_i - O_{mi} .

Rys. 8. Koncentracja azotu w funkcji intensywności integralnej znormalizowanej dla próbek o grubości 1 mm.

Fig. 8. Correlation between the nitrogen concentration and the integrated absorbance. The integrated absorbance is normalized to 1 mm sample thickness.

Rys. 9. Zależność koncentracji azotu od czasu wygrzewania w temperaturze: a/ 650°C, b/ 600°C.

Fig. 9. Dependence of the nitrogen concentration on the annealing time at: $a/650^{\circ}C$, $b/600^{\circ}C$.

Porównanie wartości koncentracji [N] otrzymanych z obu przedstawionych metod pomiarowych widoczne jest na Rys. 10. Dla [N] < 3 x 10¹⁴ at.cm⁻³ korelacja wyników z metod (2) i (3) jest bardzo dobra. W przypadku koncentracji azotu zbliżonej do 9 x 10¹⁴ at.cm⁻³ wartość obliczona wg zależności (2) jest znacznie niższa. V. Voronkov wyprowadzając swoją zależność przyjął założenie, że kompleksy mają postać N_i - O_{2i} . Próbka o koncentracji azotu 8,6 x 10¹⁴ at.cm⁻³ została wycięta z końca kryształu Si. Koncentracja tlenu w tej części kryształu była najniższa, co może być powodem, że nie wszystkie atomy azotu tworzą kompleksy N_i - O_{mi} , lecz część ich prawdopodobnie pozostaje w postaci $N_{2i}O_m$ lub N_{2i} . Defekty te widoczne są natomiast tylko w pomiarach wykonywanych w temperaturze 300 K. Tak więc w przypadku dużej koncentracji azotu określenie [N] w oparciu o równanie (2) może być obarczone znacznym błędem.

M. Możdżonek, P. Zabierowski, B. Majerowski

Rys. 10. Korelacja wyników koncentracji azotu otrzymanych wg zależności (2) i (3). Linia ciągła pokazuje zależność y = x.

Fig. 10. Correlation between the nitrogen concentration calculated by means of equations (2) and (3). The solid line is y = x.

Jak pokazują wyniki pomiarów badane kryształy Cz- Si:N posiadały koncentrację azotu w zakresie 3 x $10^{13} - 9 x 10^{14}$ at.cm⁻³. Koncentracja azotu w kryształach nie była stała lecz rosła ze wzrostem odległości od zarodzi (Rys. 11). Wzrost ten jest liniowy i określony głównie przez współczynnik segregacji *K*, który dla azotu wynosi K = 7 x 10^{-4} [4]. Tak niska wartość K sprawia, że w czasie wzrostu kryształów większość azotu pozostaje w cieczy. Rozpuszczalność azotu w roztopionym krzemie wynosi 6 x 10^{18} at.cm⁻³. Przeprowadzone wcześniej badania dla kryształów krzemu FZ domieszkowanych azotem pokazały również, że koncentracja [N] rośnie liniowo ze wzrostem długości kryształu [14].

Rys. 11. Koncentracja azotu w funkcji odległości od początku kryształu krzemu NCZ. **Fig. 11.** Variation of the axial nitrogen content in N- doped Si-CZ crystals.

4. PODSUMOWANIE

Kryształy krzemu CZ domieszkowane azotem, otrzymano poprzez wzrost kryształów w atmosferze Ar + N₂. Przeprowadzone badania generacji kompleksów N_i - O_{mi} będących płytkimi donorami termicznymi (STD) pokazały, że czas wygrzewania potrzebny do osiągnięcia stanu równowagi pomiędzy atomami azotu i tlenu zależy od koncentracji N i temperatury wygrzewania. Maksimum koncentracji poszczególnych kompleksów występuje po wygrzaniu próbek w temperaturze 650°C przez min. 1 godz. lub w temperaturze 600°C przez min. 3 godz. Tworzenie się termodonorów zostało potwierdzone również poprzez pomiar rezystywności badanych próbek. Dla koncentracji azotu [N] < 3 x 10^{14} at.cm⁻³ azot tworzy głównie kompleksy $N_i - O_{mi}$. W przypadku wyższych koncentracji [N] oraz niskiej koncentracji tlenu, część azotu może pozostawać w postaci kompleksów $N_{2i}O_m$ lub pary $N_i \cdot N_i$, które są obserwowane poprzez pomiary absorpcyjne LT-FTIR. Opracowana została metoda oparta o pomiar absorpcji w niskich temperaturach w zakresie widmowym FIR, umożliwiająca określanie koncentracji azotu w monokryształach Cz – Si:N w zakresie 1 x 10¹³ ≤ $[N] < 1 \times 10^{15}$ at.cm⁻³. Stwierdzono, że koncentracja azotu w badanych kryształach Cz - Si:N wynosiła 3 x $10^{13} - 9 x 10^{14} at.cm^{-3}$.

LITERATURA

- Karoui A., Sahtout Karoui F., Rozgonyi G.A., Yang D.: Oxygen precipitation in nitrogen doped Czochralski silicon wafers. I. Formation mechanisms of near and bulk defects. *J. Appl. Phys.*, 96, (2004), 3255-3263
- [2] Voronkov V. V., Flaster R.: The effect of nitrogen on void formation in Czochralski silicon crystals. J. Cryst. Growth, 273, (2005), 412-423
- [3] Vedde J., Gravesen P.: The fracture strength of nitrogen doped silicon wafers. *Mat. Sci. Eng.*, B36, (1996), 246-250
- [4] Yatsurugi Y., Akiyama N., Endo Y., Nozaki T.: Concentration, solubility, and equilibrium distribution coefficient of nitrogen and oxygen in semiconductor silicon. J. Electrochem. Soc.:Solid-State Sci. and Tech., 120, (1973), 975-979
- [5] Wagner P., Oeder R., Zulehner W.: Nitrogen-oxygen complexes in Czochralski-silicon. *Appl. Phys.*, 46, (1988), 73-76
- [6] Jones R., Ewels C., Goss J., Miro J., Deák P., Öberg S., Rasmussen F.B.: Theoretical and isotopic infrared absorption investigation of nitrogen-oxygen defects in silicon. *Semicond. Sci. Technol.*, 9, (1994), 2145-2148
- [7] Shi X. H., Liu P. L., Shi G. L., Shen S. C.: Anealing behavior of N-O complexes in Si grown under nitrogen atmosphere. *Solid State Commun.*, 106, (1998), 667-669
- [8] Alt H. Ch., Gomeniuk Y. V., Bittersberger F., Kempf A., Zemke D.: Far-infrared absorption due to electronic transitons of N-O complexes in Czochralski-grown silicon crystals: influence of nitrogen and oxygen concentration. *Appl. Phys. Lett.*, 87, (2005), 151909-151909
- [9] Itoh Y., Nozaki T., Masui T., Abe T.: Calibration curve for infrared spectrophotometry of nitrogen in silicon. *Appl. Phys. Lett.*, 45, (1985), 488-489
- [10] Matsumoto T., Yamanaka Y., Harada H., Inoue N.: Measurment of infrared absorbance of nitrogen in CZ silicon. *Mat. Sci. Eng.*, B91-92, (2002), 144-147
- [11] Tanahashi K., Yamada-Kaneta H.: Technique for determination of nitrogen concentration in Czochralski silicon by infrared absorption measurement. *Jpn. J. Appl. Phys.*, 42, (2003), L223-L225
- [12] Voronkov V. V., Porrini M., Collareta P., Pretto M. G., Scala R., Flaster R., Voronkova G. I., Batunina A. V., Golovina V. N., Arapkina L. V., Guliaeva A. S.: Shallow thermal donors in nitrogen-doped silicon. *J. Appl. Phys.*, 89, (2001), 4289-4293
- [13] Porrini M., Pretto M. G., Scala R.: Measurement of nitrogen in Czochralski silicon by means of infrared spectroscopy. *Mat. Sci. Eng.*, B102, (2003), 228-232
- [14] Możdżonek M., Zabierowski P., Majerowski B., Miros A., Durska A., Broszkiewicz L., Mirgos W.: Określenie koncentracji azotu w monokryształach krzemu metodą absorpcji w podczerwieni. Praca statutowa ITME, 2005
- [15] Ewels C. P., Jones R., Öberg S., Miro J., Deák P.: Shallow thermal donor defects in silicon. *Phys. Rev. Lett.*, 77, (1996), 865-868

- [16] Von Ammon W., Hölzl R., Virbulis J., Dornberger E., Schmolke R., Gräf D.: The impact of nitrogen on the defect aggregation in silicon. J. Crystal Growth, 226, (2001),19-30
- [17] Murphy J.D., Alpass C.R., Giannattasio A., Senkader S., Falster R.J., Wilshaw P.R.: Nitrogen in silicon: transport and mechanical properties. *Nucl. Inst. and Meth. in Phys. Res.*, B253, (2006), 113-117

DETERMINATION OF NITROGEN CONCENTRATION IN CZOCHRALSKI SILICON CRYSTALS FROM THE FAR INFRARED ABSORPTION SPECTRA

SUMMARY

The nitrogen doping of Czochralski silicon crystals was accomplished by adding a small amount of N₂ gas to the argon ambient in the growth chamber. The generation process of shallow thermal donors (STDs) attributed to N_i - O_{mi} complexes with the measurement of their optical absorption after isothermal annealing was investigated. On the basis of the obtained results, we proposed the annealing conditions when concentration of complexes reaches a saturated value (650°C, min.1 h or 600°C, min. 3 h). We have defined the method for the quantitative measurement of nitrogen in CZ silicon crystals by means of low temperature Fourier transform infrared spectroscopy (LT-FTIR), based on measurement in the far-infrared range. This method can be used for the detection of the nitrogen concentration in the range of 1 x10¹³ – 5 x10¹⁴ at.cm⁻³.