Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Archimedean copulas for price-volume dependencies of DAX companies

Warianty tytułu
Języki publikacji
This study deals with the empirical relations between stock returns and trading volume using stock data of DAX companies. By means of copula methodology for trading volume-returns and trading volume-volatility (contemporaneous and lagged) we try to prove the contemporaneous and dynamic structure of dependencies for a DAX stock market data set from January 1994 to December 2005 on a daily basis. Our results suggest that there is almost no relationship between stock return levels and trading volume in either direction. We find that trading volume is contemporaneously positively related to return volatility. In addition, we establish that lagged return volatility induces trading volume movements.
Opis fizyczny
Bibliogr. 44 poz., wykr.
  • Faculty of Management, Department of Applied Mathematics, University of Science and Technology, Cracow, Poland,
  • [1] ANDERSEN T. G., Return volatility and trading volume: An information flow interpretation of stochastic volatility, Journal of Finance 51, 1996, 169-204.
  • [2] AVOUYI-DOVI S., JONDEAU E., International transmission and volume effects in G5 stock market returns and volatility, BIS Conference Papers No. 8, 2000. 159-174.
  • [3] BESSEMBINDER H., SEGUIN P. J., Price volatility, trading volume and market depth: evidence from futures markets, Journal of Financial and Quantitative Analysis 28, 1993, 21-39.
  • [4] BLUME L., EASLEY D., O’HARA M., Market statistics and technical analysis: The role of volume, Journal of Finance 49, 1994, 153-181.
  • [5] BOUYE E., DURRLEMAN V., NIKEGHBALI A., RIBOULET G., RONCALLI T., Copulas for finance -A reading guide and some applications, Groupe de Recherche Operationnelle, Credit Lyonnais, Working Paper, 2000.
  • [6] BRAILSFORD T. J., The empirical relationship between trading volume, returns and volatility, Accounting and Finance 35, 1996, 89-111.
  • [7] BROCK W. A., LEBARON B. D., A dynamic structural model for stock return volatility and trading volume, The Review of Economics and Statistics 78, 1996, 94-110.
  • [8] BRUNNERMEIER M. K., Asset pricing under asymmetric information, Oxford University Press, 2001.
  • [9] CAMPBELL J. Y., GROSSMANN S. J., WANG J., Trading volume and serial correlation in slock returns, Quarterly Journal of Economics 108, 1993, 905-939.
  • [10] CHAREMZA W. W., DEADMAN D. F., New directions in econometric practice, 2nd edn., Cheltenham: Edward Elgar, 1997.
  • [11] CHENG H., Trading volume, asset price and proportional transaction cost, Working Paper, University of Paris Dauphine-Department of Economics, 2005.
  • [12] CHORDIA T., SWAMINATHAN B., Trading volume and cross-autocorrelations in stock returns, Journal of Finance 55, 2000, 913-935.
  • [13] CHORDIA T., SUBRAHMANYAM A., ANSHUMAN V. R., Trading activity and expected stock returns, Journal of Financial Economics 59, 2001, 3-32.
  • [14] CINER C., The stock price-volume linkage on the Toronto Stock Exchange: Before and after automation, Review of Quantitative Finance and Accounting 19, 2002, 335-349.
  • [15] CLARK P. K., A subordinated stochastic process model with finite variance for speculative prices, Econometrica 41, 1973, 135-155.
  • [16] CONNOLLY R., STIVERS C., Momentum and reversals in equity-index returns during periods of abnormal turnover and return dispersion, Journal of Finance 58, 2003, 1521-1555.
  • [17] COPELAND T., A model of asset trading under the assumption of sequential information arrival, Journal of Finance 31, 1976, 135-155.
  • [18] DARRAT A. F., RAHMAN S., ZHONG M., Intraday trading volume and return volatility of the DJIA stocks: A note, Journal of Banking and Finance 27, 2003, 2035-2043.
  • [19] DAVIDSON R., MACKINNON J. G., Econometric Theory and Methods, Oxford University Press, 2003.
  • [20] DURRLEMAN V., NIKEGHBALI A., RONCALU T., Which copula is the right one? Groupe de Recherche Operationnelle, Credit Lyonnais, Technical Report, 2000.
  • [21] EMBRECHTS P., LINDSKOG F., MCNEIL A. J., Modelling Dependence with Copulas and Applications to Risk Management, [in:] Handbook of Heavy Tailed Distributions in Finance S. Rachev (ed.), Elsevier, Chapter 8, 2003, 329-384.
  • [22] EMBRECHTS P., McNEIL A. J., STRAUMANN D., Correlation and dependency in risk management: properties and pitfalls, [in:] Risk Management: Value at Risk and Beyond, M.A.H. Dempster (ed.), Cambrige Univeristy Press, Cambrige, 2002.
  • [23] EPPS T. W., EPPS M. L., The stochastic dependence of security price changes and transaction volumes: Implications for the mixture-of-distribution hypothesis, Econometrica 44, 1976, 305-321.
  • [24] FREES E. W., VALDEZ E. A., Understanding relationships using copulas, North American Actuarial Journal 2(1), 1998, 1-25
  • [25] GALLANT A. R., Rossi P. E., TAUCHEN G., Slock prices and volume. Review of Financial Studies 5, 1992. 199-242.
  • [26] GENEST C., RIVEST L., Statistical Inference Procedures for Bivariate Archimedean Copulas, Journal of the American Statistical Assocation, Vol. 88, No. 423, 1993, 1034-1043.
  • [27] HIEMSTRA C., JONES J. D., Testing for linear and nonlinear Granger causality in the slock price - volume relation, Journal of Finance 49, 1994, 1639-1664.
  • [28] KARPOFF J. M., The relation between price changes and trading volume: A survey. Journal of Financial and Quantitative Analysis 22, 1987, 109-126.
  • [29] KEMPF A., KORN O., Preisprognosen mit Handelsvolumen, Finanzmarkt und Portfolio Management 13, 1999. 178-193.
  • [30] LAMOUREUX C. G., LASTRAPES W. D., Heteroscedasticity in slock return data: Volume versus GARCH effects, Journal of Finance 45, 1990, 221-229.
  • [31] LAMOUREUX C. G., LASTRAPES W. D., Endogenous trading volume and momentum in stock-return volatility, Journal of Business and Economic Statistics 12, 1994, 253-260.
  • [32] LEE B. -S., RUI O. M., The dynamic relationship between stock returns and trading volume: Domestic and cross-country evidence, Journal of Banking and Finance 26, 2002, 51-78.
  • [33] LIESENFELD R., Dynamic bivariate mixture models: Modelling the behaviour of prices and trading volume. Journal of Business and Economic Statistics 16, 1998. 101-109.
  • [34] MARSH T. A., WAGNER N., Return-volume dependence and extremes in international equity markets, EFA 2003 Annual Conference Paper No. 284; Research Program in Finance RPF No. 293, 2004.
  • [35] McKENZlE M. D., FAFF R. W.. The determinants of conditional autocorrelation in slock returns, Journal of Financial Research 26, 2003, 259-274.
  • [36] MILLS T. C., Modelling trends and cycles in economic lime series, Palgrave MacMillan, 2003.
  • [37] NELSEN R., An Introduction to Copulas, Springer, New York, 1999.
  • [38] NELSON D., Conditional heteroscedasticily in asset returns: A new approach, Econometrica 59, 1990, 347-370.
  • [39] OMRAN M. F., McKENZlE E., Heteroscedasticity in stock returns data revisited: Volume versus GARCH effects, Applied Financial Economics 10, 2000, 553-560.
  • [40] PESARAN M. H., SHIN Y., Impulse response analysis in linear multivariate models. Economics Letters 58, 1998, 17-29.
  • [41] SCHNEIDER J., A rational expectations equilibrium with informative trading volume, Working Paper, University of British Columbia, 2006.
  • [42] SUOMINEN M., Trading volume and information revelation in stock markets. Journal of Financial and Quantitative Analysis 36, 2001, 545-565.
  • [43] TAUCHEN G., PITTS M., The price variability-volume relationship on speculative markets, Econometrica 51, 1983, 485-505.
  • [44] TAWN J., Bivariate extreme value theory: Models and estimation, Biometrika 75, 1988, 397-415.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.