PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A C1 function which is nowhere strongly paraconvex and nowhere semiconcave

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
X be an infinite-dimensional Banach space which admits an equivalent Fréchet smooth norm (or, more generally, a C1 Lipschitz bump function). Then there exists a C1 Lipschitz function ƒ on X such that, on any open ball, ƒ is neither strongly paraconvex nor semiconcave. In particular, ƒ is approximately convex in the sense of Ngai, Luc and Thera, but it is not strongly paraconvex on any ball.
Rocznik
Strony
803--810
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
Bibliografia
  • ALBANO, P. and CANNARSA, P. (1999) Singularities of semiconcave functions in Banach spaces. In: W.M. McEneaney, G.G. Yin, Q. Zhang, eds., Stochastic Analysis, Control, Optimization and Applications, Birkhäuser, Boston, 171-190.
  • ALBERTI, G., AMBROSIO, L. and CANNARSA, P. (1992) On the singularities of convex functions. Manuscripta Math. 76, 421-435.
  • CANNARSA, P. and SINESTRARI, C. (2004) Semiconcave functions, Hamilton-Jacobi equations, and optimal control. Progress in Nonlinear Differential Equations and their Applications 58, Birkhäuser, Boston.
  • DANIILIDIS, A. and GEORGIEV, P. (2004) Approximate convexity and submonotonicity. J. Math. Anal. Appl. 291, 292-301.
  • DEVILLE, R., GODEFROY, G. and ZIZLER, V. (1993) Smoothness and renormings in Banach spaces. Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman.
  • FEDERER, H. (1969) Geometric Measure Theory. Grundlehren der math. Wiss. 153, Springer, New York.
  • NGAI, H.V., Luc, D.T. and THÉRA, M. (2000) Approximate convex functions. J. Nonlinear Convex Anal. 1, 155-176.
  • NIJENHUIS, A. (1974) Strong derivatives and inverse mappings. Amer. Math. Monthly 81, 969-980.
  • RESHETNYAK, YU.G. (1956) On a generalization of convex surfaces (in Russian). Mat. Sbornik 40 (82), 381-398.
  • ROCKAFELLAR, R.T. (1982) Favorable classes of Lipschitz continuous functions in subgradient optimization. In: E. Nurminski, ed., Nondifferen-tiable Optimization, Pergamon Press, New York, 125-144.
  • ROLEWICZ, S. (1979) On γ-paraconvex multifunctions. Math. Jpn. 24, 293-300.
  • ROLEWICZ, S. (2000) On α(-)-paraconvex and strongly α(-)-paraconvex functions. Control Cyber. 29, 367-377.
  • ROLEWICZ, S. (2001) On uniformly approximate convex and strongly aα(-)-paraconvex functions. Control Cyber. 30, 323-330.
  • ROLEWICZ, S. (2005) On differentiability of strongly α(-)-paraconvex functions in non-separable Asplund spaces. Studia Math. 167, 235-244.
  • ROLEWICZ, S. (2006) An extension of Mazur’s theorem on Gateaux differentiability to the class of strongly α(-)-paraconvex functions. Studia Math. 172, 243-248.
  • SPINGARN, J.E. (1981) Submonotone subdifferentials of Lipschitz functions. Trans. Amer. Math. Soc. 264, 77-89.
  • VESELÝ, L. and ZAJÍČEK, L. (1989) Delta-convex mappings between Banach spaces and applications. Dissertationes Math. (Rozprawy Mat.) 289.
  • ZAJÍČEK, L. (1991) Frechet differentiability, strict differentiability and subdif-ferentiability. Czechoslovak Math. J. 41 (116), 471-489.
  • ZAJÍČEK, L. (2007) Differentiability of approximately convex, semiconcave and strongly paraconvex functions. To appear in J. Convex Anal.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0017-0069
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.