PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stability of higher-level energy norms of strong solutions to a wave equation with localized nonlinear damping and a nonlinear source term

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We derive global in time a priori bounds on higher-level energy norms of strong solutions to a semilinear wave equation: in particular, we prove that despite the influence of a nonlinear source, the evolution of a smooth initial state is globally bounded in the strong topology ∼ H2 x H1. And the bound is uniform with respect to the corresponding norm of the initial data. It is known that an m-accretive semigroup generator moriotoni-cally propagates smoothness of the initial condition; however, this result does not hold in general for Lipschitz perturbations of monotone systems where higher order Sobolev norms of the solution may blowup asymptotically as t → ∞. Due to nonlinearity of the system, the only a priori global-in-time bound that follows from classical methods is that on finite energy: ∼ H1 x L2. We show that under some correlation between growth rates of the damping and the source, the norms of topological order above the finite energy level remain globally bounded. Moreover, we also establish this result when damping exhibits sublinear or superlinear growth at the origin, or at infinity, which has immediate applications to asymptotic estimates on the decay rates of the finite energy. The approach presented in the paper is not specific to the wave equation, and can be extended to other hyperbolic systems: e.g. plate, Maxwell, and Schrodinger equations.
Rocznik
Strony
681--710
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
autor
  • Department of Mathematics, University of Virginia, Charlottesville, VA 22904, USA
Bibliografia
  • ADAMS, R.A. (1975) Sobolev Spaces. Academic Press, New York-London.
  • BARBU, V. (1993) Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic Press Inc., Boston, MA.
  • BARDOS, C., LEBEAU, G. and RAUCH, J. (1992) Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30, 1024 - 1065.
  • BRENNER, S.C. and SCOTT, L.R. (1994) The Mathematical Theory of Finite Element Method. Springer.
  • CHUESHOV, I., ELLER, M. and LASIECKA, I. (2002) On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation. Comm. Partial Differential Equations 27, 1901 - 1951.
  • GRISVARD, P. (1985) Elliptic Problems in Nonsmooth Domains. Pitman, Boston, MA.
  • GRISVARD, P. (1989) Contrõlabilité exacte des solutions de 1’équation des ondes en présence de singularités. J. Math. Pures et Appl. 68, 215 - 259.
  • GEORGIEV, V. and TODOROVA, G. (1994) Existence of solutions of the wave equation with nonlinear damping and source term. J. Differential Equations 109, 295-308.
  • HARAUX, A. (1987) Semi-linear Hyperbolic Problems in Bounded Domains. Math. Rep. 3, i-xxiv.
  • HARAUX, A. (1981) Nonlinear Evolution Equations - Global Behaviour of Solutions. Springer Verlag.
  • KOMORNIK, V. (1994) Exact Controllability and Stabilization, The Multiplier Method. Masson-John Wiley, Paris.
  • LAGNESE, J. (1983) Decay of the solution of the wave equation in a bounded region with boundary dissipation. J. Diff. Equations 50, 163-182.
  • LASIECKA, I. (2002) Mathematical Control Theory of Coupled PDEs. SIAM.
  • LASIECKA, I. and TATARU, D. (1993) Uniform boundary stabilization of semi-linear wave equation with nonlinear boundary dissipation. Diff. and Integral Equations 6, 507-533.
  • LASIECKA, I., TRIGGIANI, R. and ZHANG, X. (2000) Nonconservative wave equations with unobserved Neumann B.C.: global uniqueness and observability in one shot. In: Differential Geometric Methods in the Control of Partial Differential Equations (Boulder, CO, 1999), AMS, Providence, RI, 227-325.
  • LASIECKA, I. and TOUNDYKOV, D. (2006) Energy decay rates for the semi-linear wave equation with nonlinear localized damping and source terms. Nonlinear Analysis 64, 1757 -1797.
  • SERRIN, J., TODOROVA, G. and VITILLARO, E. (2003) Existence for a nonlinear wave equation with damping and source terms. Integral and Differential Equations 16, 13-50.
  • SHOWALTER, R. E. (1997) Monotone Operators in Banach Spaces and Nonlinear Partial Differential Equations. AMS, Providence, RI.
  • TOUNDYKOV, D. (2007) Optimal decay rates for solutions of nonlinear wave equation with localized nonlinear dissipation of unrestricted growth and critical exponents source terms under mixed boundary conditions. Nonlinear Analysis T.M.A. 67, 512 - 544.
  • VANCOSTENOBLE, J. and MARTINEZ, P. (2000) Optimally of energy estimates for the wave equation with nonlinear boundary velocity damping. SIAM J. Control Optim. 39, 776-797.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0017-0063
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.