PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radiality and semismoothness

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We provide sufficient conditions for radiality and semismoothness. In general Banach spaces, we show that calmness ensures Dini-radiality as well as Dini-convexity of solution set to inequality systems. In finite dimensional spaces, we introduce the concept of Clarke-radiality and semismoothness of order m and show that each subanalytic set satisfies these properties. Similar properties are obtained for locally Lipschitzian subanalytic functions.
Rocznik
Strony
669--680
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
  • Universite de Bourgogne, Institut de Mathematiques de Bourgogne, CNRS 5584 B.P. 47870, 21078 Dijon, France, jourani@u-bourgogne.fr.
Bibliografia
  • BIERSTONE, E. and MILMAN, P.D. (1988) Semianalytic and subanalytic sets. Publications de l’IHES 67, 5-42.
  • BOLTE, J., DANIILIDIS, A., LEWIS, A. and SHIOTA, M. (2007) Clarke subgradients of stratifiable functions. SIAM J. Optim. 18, 556-572.
  • BOLTE, J., DANIILIDIS, A. and LEWIS, A. (2007) Tame functions are semismooth. To appear in Math. Prog.
  • CHAZAL, F. and SOUFFLET, R. (2004) Stability and finiteness properties of medial axis and skeleton. J. Cont. Dynamical Syst 10, 149-170.
  • CLARKE, F. (1983) Optimization and Nonsmooth Analysis. Wiley Interscience, New York.
  • CLARKE, F.H., LEDYAEV, Yu.S., STERN, R.J. and WOLENSKI, P.R. (1998) Nonsmooth Analysis and Control Theory. Springer, New York.
  • COMINETTI, R. (1990) Metric regularity, tangent sets, and second-order optimality conditions. Appl. Math. Optim. 21 (3), 265-287.
  • HENRION, R. and OUTRATA, J. (2001) A subdifferential condition for calmness of multifunctions. J. Math. Anal. Appl. 258, 110-130.
  • KONOV, I.V. (1983) Subgradient successive relaxation method for solving optimization problems. VINITI, 531-83.
  • LEWIS, A.S. (2002) Robust regularization. Technical report, Simon Fraser University, September 2002.
  • MIFFLIN, R. (1977A) Semismooth and semiconvex functions in constrained optimization. SIAM J. Cont. Optim. 15, 959-972.
  • MIFFLIN, R. (1977B) An algorithm for constrained optimization with semismooth functions. Math. Oper. Res. 2, 191-207.
  • MORDUKHOVICH, B.S. (2005) Variational Analysis and Generalized Differentiation, Vol. 1: Basic Theory, Vol. 2: Applications. Springer, Berlin.
  • SHAPIRO, A. (1994) Existence and differentiability of metric projections in Hilbert spaces. SIAM J. Optim. 4, 130-141.
  • VAN DEN DRIES, L. and MILLER, C. (1996) Geometries categories and o-minimal structures. Duke Math. J. 84, 497-540.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0017-0062
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.