PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Variational principles for set-valued mappings with applications to multiobjective optimization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper primarily concerns the study of general classes of constrained multiobjective optimization problems (including those described via set-valued and vector-valued cost mappings) from the viewpoint of modern variational analysis and generalized differentiation. To proceed, we first establish two variational principles for set-valued mappings, which-being certainly of independent interest-are mainly motivated by applications to multiobjective optimization problems considered in this paper. The first variational principle is a set-valued counterpart of the seminal derivative-free Ekeland variational principle, while the second one is a set-valued extension of the subdifferential principle by Mordukhovich and Wang, formulated via an appropriate subdifferential notion for set-valued mappings with values in partially ordered spaces. Based on these variational principles and corresponding tools of generalized differentiation, we derive new conditions of the coercivity and Palais-Smale types ensuring the existence of optimal solutions to set-valued optimization problems with noncompact feasible sets in infinite dimensions and then obtain necessary optimality and suboptimality conditions for nonsmooth multiobjective optimization problems with general constraints, which are new in both finite-dimensional and infinite-dimensional settings.
Rocznik
Strony
531--562
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
Bibliografia
  • BAO, T.Q., GUPTA, P. and MORDUKHOVICH, B.S. (2007) Necessary conditions in multiobjective optimization with equilibrium constraints. J. Optim. Theory Appl. 134 (3).
  • BAO, T.Q. and KHANH, P.Q. (2003) Are several recent generalizations of Ekeland’s variational principle more general than the original principle? Acta Math. Vietnam. 28, 345-350.
  • BIANCHI, M., KASSAY, G. and PINI, R. (2005) Existence of equilibria via Ekeland’s principle. J. Math. Anal. Appl. 305, 502-512.
  • BORWEIN, J.M. and ZHU, Q.J. (2005) Techniques of Variational Analysis. CMS Books in Mathematics 20, Springer, New York.
  • CHEN, G.Y., HUANG, X.X. and YANG, X.Q. (2005) Vector Optmization: Set-Valued and Variational Analysis. Lecture Notes Econ. Math. Syst. 541, Springer, Berlin.
  • EKELAND, I. (1974) On the variational principle. J. Math. Anal. Appl. 47, 324-353.
  • EKELAND, I. (1979) Nonconvex minimization problems. Bull. Amer. Math. Soc. 1, 432-467.
  • GÖPFERT, A., RIAHI, H., TAMMER, C. and ZALINESCU, C. (2003) Variational Methods in Partially Ordered Spaces. CMS Books in Mathematics 17, Springer, New York.
  • HA, T.X.D. (2003) The Ekeland variational principle for set-valued maps involving coderivatives. J. Math. Anal. Appl. 286, 509-523.
  • HA, T.X.D. (2005) Some variants of the Ekeland variational principle for a set-valued map. J. Optim. Theory Appl. 124, 187-206.
  • HA, T.X.D. (2006) Variants of the Ekeland variational principle for a set-valued map involving the Clarke normal cone. J. Math. Anal. Appl. 316, 346-356.
  • HAMEL, A. (2005) Equivalents to Ekeland’s variational principle in uniform spaces. Nonlinear Anal. 62, 913-924.
  • HAMEL, A. and LOHNE, A. (2006) Minimal element theorems and Ekeland’s principle with set relations. J. Nonlinear Convex Anal. 7, 19-37.
  • JAHN, J. (2004) Vector Optimization: Theory, Applications and Extensions. Series Oper. Res., Springer, Berlin.
  • KHANH, P.Q. (1989) On Caristi-Kirk’s theorem and Ekeland’s variational principle for Pareto extrema. Bull. Polish Acad. Sci. Math. 37, 33-39.
  • LUC, D.T. (1989) Theory of Vector Optimization. Lecture Notes Econ. Math. Syst. 319, Springer, Berlin.
  • MORDUKHOVICH, B.S. (2006a) Variational Analysis and Generalized Differentiation, I: Basic Theory. Grundlehren Series (Fundamental Principles of Mathematical Sciences) 330, Springer, Berlin.
  • MORDUKHOVICH, B.S. (2006b) Variational Analysis and Generalized Differentiation, II: Applications. Grundlehren Series (Fundamental Principles of Mathematical Sciences) 331, Springer, Berlin.
  • MORDUKHOVICH, B.S. and WANG, B. (2002) Necessary optimality and sub-optimality conditions in nondifferentiable programming via variational principles. SIAM J. Control Optim. 41, 623-640.
  • PALLASCHKE, D. and ROLEWICZ, S. (1998) Foundations of Mathematical Optimization: Convex Analysis without Linearity. Kluwer, Dordrecht, The Netherlands.
  • PHELPS, R.R. (1993) Convex Functions, Monotone Operators and Differentiability. Lecture Notes Math. Sc. 1364, Springer, Berlin.
  • ROCKAFELLAR, R.T. and WETS, R.J.-B. (1998) Variational Analysis. Grundlehren Series (Fundamental Principles of Mathematical Sciences) 317, Springer, Berlin.
  • ROLEWICZ, S. (1975) On a norm scalarization in infinite-dimensional Banach spaces. Control and Cybernetics 4, 85-89.
  • STAMATE C. (2003) A survey on vector subdifferentials. Anal. Stiintif. Univ. lasi 59, 25-44.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0017-0053
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.