Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We consider a multicriteria lexicographic Boolean problem of minimizing absolute deviations of linear functions from zero. We investigate the stability radius which can be understood as a limit level of independent perturbations of the parameters, for which new lexicographic optima do not appear. Lower and upper accessible bounds of the stability radius are obtained.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
333--346
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
autor
- Belarussian State University, av. Independence 4, 220050, Minsk, Belarus, emelichev@tut.by
Bibliografia
- BUKHTOYAROV, S., EMELICHEV, V. and STEPANISHINA, Y. (2003) Stability of discrete vector problems with the parametric principle of optimality. Cybernetics and Systems Analysis 39 (4), 604-614.
- CHAKRAVARTI, N. and WAGELMANS, A. (1998) Calculation of stability radius for combinatorial optimization. Operations Research Letters 23 (1), 1-7.
- CHERVAK, Yu. (2002) Unimprovable choice (in Ukrainian). Uzhgorod National University, Uzhgorod.
- EMELICHEV, V. and BERDYSHEVA, R. (1998) On the radii of steadiness, quasi-steadiness, and stability of a vector trajectory problem on lexicographic optimization. Discrete Math. Appl. 8 (2), 135-142.
- EMELICHEV, V. and KRICHKO, V. (2001) Stability radius of an efficient solution to a vector quadratic problem of Boolean programming. Comput. Math, and Mathem. Physics. 41 (2), 322-326.
- EMELICHEV, V., GIRLICH, E., NIKULIN, Yu. and PODKOPAEV, D. (2002) Stability and regularization of vector problems of integer linear programming. Optimization 51 (4), 645 - 676.
- EMELICHEV, V., KRICHKO, V. and NIKULIN, Yu. (2004) The stability radius of an efficient solution in minimax Boolean programming problem. Control and Cybernetics 33 (1), 127-132.
- EMELICHEV, V., KUZ’MIN, K. and LEONOVICH, A. (2004) Stability in the combinatorial vector optimization problems. Automatic and Remote Control 65 (2), 227-240.
- EMELICHEV, V., KUZ’MIN, K. and NIKULIN, Yu. (2005) Stability analysis of the Pareto optimal solution for some vector Boolean optimization problem. Optimization 54 (6), 545-561.
- EMELICHEV, V. and KUZ’MIN, K. (2005) The stability radius of efficient solution to a vector problem of Boolean programming in the l1 metric. Doklady Mathematics 71 (2), 266-268.
- EMELICHEV, V. and KUZ’MIN, K. (2006) Finite cooperative games with a parametric concept of equilibrium under uncertainty conditions. Journal of Computer and Systems Sciences International 45 (2), 276-281.
- GREENBERG, H. J. (1998) An annotated bibliography for post-solution analysis in mixed integer and combinatorial optimization. In: D.L. Woodruff, ed., Advances in Computational and Stochastic Optimization, Logic Programming and Heuristic Search. Kluwer Acad. Publ, Boston, 97-148.
- HOESEL, S. and WAGELMANS, A. (1999) On the complexity of postoptimality analysis of 0-1 programs. Discrete Appl. Math. 91, 251-263.
- LIBURA, M., VAN DER POORT, E., SIERKSMA, G. and VAN DER VEEN, J. (1998) Stability aspects of the traveling salesman problem based on k-best solutions. Discrete Appl. Math. 87, 159-185.
- LIBURA, M. and NIKULIN, YU. (2004) Stability and accuracy functions in multicriteria combinatorial optimization problem with ∑-MINMAX and ∑-MINMIN partial criteria. Control and Cybernetics 33 (3). 511-524.
- SERGIENKO, I., KOZERATSKAYA, L. and LEBEDEVA, T. (1995) Investigation of stability and parametric analysis of discrete optimization problems (in Russian). Kiev, Naukova Dumka.
- SERGIENKO, I. and SHILO, V. (2003) Discrete optimization problems. Problems, decision methods, investigations (in Russian). Kiev, Naukova Dumka.
- SERGIENKO, I. (1988) Mathematical models and methods of solving discrete optimization problems (in Russian). Kiev, Naukova Dumka.
- SOTSKOV, YU., LEONTEV, V. and GORDEEV, E. (1995) Some concepts of stability analysis in combinatorial optimization. Discrete Appl. Math. 58 (2), 169-190.
- TANINO, T. and SAWARAGI, Y. (1980) Stability of nondominated solutions in multicriteria decision-making. Journal of Optimization Theory and Applications 30 (2), 229-253.
- SAWARAGI, Y., NAKAYAMA, H. and TANINO, T. (1985) Theory of Multi-Objective Optimization. Academic Press, Orlando.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0017-0042