PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On stability of some lexicographic multicriteria Boolean problem

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider a multicriteria lexicographic Boolean problem of minimizing absolute deviations of linear functions from zero. We investigate the stability radius which can be understood as a limit level of independent perturbations of the parameters, for which new lexicographic optima do not appear. Lower and upper accessible bounds of the stability radius are obtained.
Rocznik
Strony
333--346
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
  • Belarussian State University, av. Independence 4, 220050, Minsk, Belarus, emelichev@tut.by
Bibliografia
  • BUKHTOYAROV, S., EMELICHEV, V. and STEPANISHINA, Y. (2003) Stability of discrete vector problems with the parametric principle of optimality. Cybernetics and Systems Analysis 39 (4), 604-614.
  • CHAKRAVARTI, N. and WAGELMANS, A. (1998) Calculation of stability radius for combinatorial optimization. Operations Research Letters 23 (1), 1-7.
  • CHERVAK, Yu. (2002) Unimprovable choice (in Ukrainian). Uzhgorod National University, Uzhgorod.
  • EMELICHEV, V. and BERDYSHEVA, R. (1998) On the radii of steadiness, quasi-steadiness, and stability of a vector trajectory problem on lexicographic optimization. Discrete Math. Appl. 8 (2), 135-142.
  • EMELICHEV, V. and KRICHKO, V. (2001) Stability radius of an efficient solution to a vector quadratic problem of Boolean programming. Comput. Math, and Mathem. Physics. 41 (2), 322-326.
  • EMELICHEV, V., GIRLICH, E., NIKULIN, Yu. and PODKOPAEV, D. (2002) Stability and regularization of vector problems of integer linear programming. Optimization 51 (4), 645 - 676.
  • EMELICHEV, V., KRICHKO, V. and NIKULIN, Yu. (2004) The stability radius of an efficient solution in minimax Boolean programming problem. Control and Cybernetics 33 (1), 127-132.
  • EMELICHEV, V., KUZ’MIN, K. and LEONOVICH, A. (2004) Stability in the combinatorial vector optimization problems. Automatic and Remote Control 65 (2), 227-240.
  • EMELICHEV, V., KUZ’MIN, K. and NIKULIN, Yu. (2005) Stability analysis of the Pareto optimal solution for some vector Boolean optimization problem. Optimization 54 (6), 545-561.
  • EMELICHEV, V. and KUZ’MIN, K. (2005) The stability radius of efficient solution to a vector problem of Boolean programming in the l1 metric. Doklady Mathematics 71 (2), 266-268.
  • EMELICHEV, V. and KUZ’MIN, K. (2006) Finite cooperative games with a parametric concept of equilibrium under uncertainty conditions. Journal of Computer and Systems Sciences International 45 (2), 276-281.
  • GREENBERG, H. J. (1998) An annotated bibliography for post-solution analysis in mixed integer and combinatorial optimization. In: D.L. Woodruff, ed., Advances in Computational and Stochastic Optimization, Logic Programming and Heuristic Search. Kluwer Acad. Publ, Boston, 97-148.
  • HOESEL, S. and WAGELMANS, A. (1999) On the complexity of postoptimality analysis of 0-1 programs. Discrete Appl. Math. 91, 251-263.
  • LIBURA, M., VAN DER POORT, E., SIERKSMA, G. and VAN DER VEEN, J. (1998) Stability aspects of the traveling salesman problem based on k-best solutions. Discrete Appl. Math. 87, 159-185.
  • LIBURA, M. and NIKULIN, YU. (2004) Stability and accuracy functions in multicriteria combinatorial optimization problem with ∑-MINMAX and ∑-MINMIN partial criteria. Control and Cybernetics 33 (3). 511-524.
  • SERGIENKO, I., KOZERATSKAYA, L. and LEBEDEVA, T. (1995) Investigation of stability and parametric analysis of discrete optimization problems (in Russian). Kiev, Naukova Dumka.
  • SERGIENKO, I. and SHILO, V. (2003) Discrete optimization problems. Problems, decision methods, investigations (in Russian). Kiev, Naukova Dumka.
  • SERGIENKO, I. (1988) Mathematical models and methods of solving discrete optimization problems (in Russian). Kiev, Naukova Dumka.
  • SOTSKOV, YU., LEONTEV, V. and GORDEEV, E. (1995) Some concepts of stability analysis in combinatorial optimization. Discrete Appl. Math. 58 (2), 169-190.
  • TANINO, T. and SAWARAGI, Y. (1980) Stability of nondominated solutions in multicriteria decision-making. Journal of Optimization Theory and Applications 30 (2), 229-253.
  • SAWARAGI, Y., NAKAYAMA, H. and TANINO, T. (1985) Theory of Multi-Objective Optimization. Academic Press, Orlando.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0017-0042
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.