Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The category Top of topological spaces and continuous maps has the structures of a fibration category and a cofibration category in the sense of Baues, where fibration = Hurewicz fibration, cofibration = the usual cofibration, and weak equivalence = homotopy equivalence. Concentrating on fibrations, we consider the problem: given a full subcategory C of Top, is the fibration structure of Top restricted to C a fibration category? In this paper we take the special case where C is the full subcategory ANR of Top whose objects are absolute neighborhood retracts. The main result is that ANR has the structure of a fibration category if fibration = map having a property that is slightly stronger than the usual homotopy lifting property, and weak equivalence = homotopy equivalence.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
145--154
Opis fizyczny
Bibliogr. 4 poz.
Twórcy
autor
- Department of Mathematics and Informatics, Graduate School of Human Development and Environment, Kobe University, Kobe, 657-8501, Japan, tmiyata@kobe-u.ac.jp
Bibliografia
- [1] H. J. Baues, Algebraic Homotopy, Cambridge Univ. Press, Cambridge, 1989.
- [2] S. Mardesic and J. Segal, Shape Theory, North-Holland, 1982.
- [3] D. G. Quillen, Homotopical Algebra, Lecture Notes in Math. 43, Springer, 1967.
- [4] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0015-0020