PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fibrations in the category of absolute neighborhood retracts

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The category Top of topological spaces and continuous maps has the structures of a fibration category and a cofibration category in the sense of Baues, where fibration = Hurewicz fibration, cofibration = the usual cofibration, and weak equivalence = homotopy equivalence. Concentrating on fibrations, we consider the problem: given a full subcategory C of Top, is the fibration structure of Top restricted to C a fibration category? In this paper we take the special case where C is the full subcategory ANR of Top whose objects are absolute neighborhood retracts. The main result is that ANR has the structure of a fibration category if fibration = map having a property that is slightly stronger than the usual homotopy lifting property, and weak equivalence = homotopy equivalence.
Rocznik
Strony
145--154
Opis fizyczny
Bibliogr. 4 poz.
Twórcy
autor
  • Department of Mathematics and Informatics, Graduate School of Human Development and Environment, Kobe University, Kobe, 657-8501, Japan, tmiyata@kobe-u.ac.jp
Bibliografia
  • [1] H. J. Baues, Algebraic Homotopy, Cambridge Univ. Press, Cambridge, 1989.
  • [2] S. Mardesic and J. Segal, Shape Theory, North-Holland, 1982.
  • [3] D. G. Quillen, Homotopical Algebra, Lecture Notes in Math. 43, Springer, 1967.
  • [4] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0015-0020
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.