PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New machine learning methods for prediction of protein secondary structures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The first and probably the most important step in predicting the tertiary structure of proteins from its primary structure is to predict as many as possible secondary structures in a protein chain. Secondary structure prediction problem has been known for almost a quarter of century. In this paper, new machine learning methods such as LAD, LEM2, and MODLEM have been used for secondary protein structure prediction with the aim to choose the best among them which will be later parallelized in order to handle a huge amount of data sets.
Rocznik
Strony
183--201
Opis fizyczny
Bibliogr. 39 poz.
Twórcy
autor
autor
  • Institute of Computing Sciences, Poznań University of Technology, ul. Piotrowo 3a, 60-965 Poznań, Poland
Bibliografia
  • ALTSCHUL, S.F., MADDEN, T.L., SCHAFFER, A.A., ZHANG, J., ZHANG, Z., MILLER, W. and Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402.
  • ANFINSEN, C.B. (1973) Principles that govern the folding of protein chains. Science 181, 223-230.
  • BAIROCH, A. and APWEILER, R. (2000) The SWISS-PROT protein sequence database and its supplement TrEMBL. Nucleic Acids Res., 28, 45-48.
  • BALDI, P. and BRUNAK, S. (2001) Bioinformatics. The Machine Learning approach. The MIT Press.
  • BALDI, P., BRUNAK, S., FRASCONI, P., SODA, G. and POLLASTRI., G. (1999) Exploiting the past and the future in protein secondary structure predicton. Bioinformatics 15, 937-946.
  • BERENSTEIN, F.C., KOEYZLE, T.F., WILLIAMS, G.J.B., MEYER, J.E.F., BRICE, M.D., RODGERS, J.R., KENNARD, O., SHIMANOUCHI, T. and TATSUMI, M. (1997) The protein Data Bank: A computer based archival file for macromolecular structures. Journal of Molecular Biology 112, 525-542.
  • BŁAŻEWICZ, J., HAMMER, P.L. and ŁUKASIAK, P. (2001a) Prediction of protein secondary structure using Logical Analysis of Data algorithm. Computational Methods in Science and Technology 7(1), 7-26.
  • BŁAŻEWICZ, J., HAMMER, P.L. and ŁUKASIAK, P. (2001b) Protein Secondary Structure Prediction using Logical Analysis of Data. Mathematics and Simulation with Biological. Economical and Musicoacoustical Applications, WSES Press, 202-207.
  • BŁAŻEWICZ, J., HAMMER, P.L. and ŁUKASIAK, P. (2005) Predicting Secondary structures of Proteins. IEEE Engineering in Medicine and Biology 24 (3), 88-94.
  • BOROS, E., HAMMER, P.L., IBARAKI, T., KOGAN, A.. MAYORAZ, E., and MUCHNIK, I. (1996) An implementation of logical analysis of data. Rutcor Research Report, 22-96.
  • CATLETT, J. (1991) On changing continuous attributes into ordered discrete attributes. In: Y. Kodratoff, ed., Proceedings of the European Working Session on Learning. SpringerVerlag, Berlin, 164-178.
  • CUFF, J.A. and BARTON, G.J. (1999) Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins 34, 508-519.
  • CUFF, J. and BARTON, G. (2000) Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 40, 502-511.
  • CUFF, J. et al. (1998) Jpred: A consensus secondary structure prediction server. Bioinformatics 14, 892-893.
  • FISHER, D. and EISENBERG, D. (1996) Fold recognition using sequence derived properties. Prot. Sci. 5, 947-955.
  • FRISHMAN, D. and ARGOS, P. (1997) Seventy-five percent accuracy in protein secondary structure prediction. Proteins, 329-335.
  • GARNIER, J.. OSGUTHORPE, D. and ROBSON, B. (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 120, 97-120.
  • GRZYMAŁA-BUSSE, J.W. (1992) LERS - A system for learning from examples based on rough sets. In: R. Stowinski, ed. Intelligent Decision Support -Handbook of Applications and Advances of the Plough Set Theory. Kluwer Academic Publishers, Dordrecht/Boston, 3-18.
  • GRZYMALA-BUSSE. J.W. and STEFANOWSKI, J. (2001) Three discretization methods for rule induction. International Journal of Intelligent Systems, January.
  • HAMMER, P.L. (1986) Partially Defined Boolean Functions and Cause-Effect Relationships. Presented at the International Conference on Multi-Attribute Decision Making Via OR-Based Expert Systems, University of Passau, Germany. April 1986.
  • HUA, S., SUN, Z. (2001) A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. J. Mol. Biol. 308; 397 407.
  • JONES, D. (1999a) GenThreader: an efficient and reliable protein fold recognition method for genomic sequences. J. Mol. Biol. 287, 797-815.
  • JONES, D. (1999b) Protein secondary structure prediction based on position-specific scoring matrices. ,7. Mol. Biol . 292, 195-202.
  • KABSCH, W. and SANDER, C. (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen bonded and geometrical features. Biopolymers 22, 2577-2637.
  • KING, R. and STERNBERG, M. (1996) Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Prot. Sci. 5, 2298-2310.
  • LEE, Y. (2005) Hidden Markov models with states depending on observations. Pattern Recognition Letters 26, 977-984.
  • LIM, V. (1974) Algorithms for prediction of α-helical and β-structural regions in globular proteins. J. Mol. Biol. 88, 873-894.
  • MAYORAZ, E. (1995) C++Tools for Logical Analysis of Data. Rutcor Research Raport, 1-95.
  • OUALI M. and KING, R.D. (2000) Cascaded multiple classifiers for secondary structure prediction. Protein Sci. 9, 1162-1176.
  • PEVZNER, A. (2000) Computational Molecular Biology. An algorithmic approach. The MIT Press.
  • POLLASTRI, G., PRZYBYLSKI, D., ROST B. and BALDI, P. (2002) Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins 47, 228-235.
  • QIAN, N. and SEJNOWSKI, T. (1988) Predicting the secondary structure of globular proteins using neural networks models. J. Mol. Biol. 202, 865-884.
  • PRZYBYLSKI, D., ROST, B. (2002) Alignments grow, secondary structure prediction improves. Proteins 46, 197-205.
  • RUS, S. and KROGH, A. (1996) Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments. J. Comp. Biol. 3, 163-183.
  • ROST, B. and SANDER, C. (1993) Prediction of protein secondary structure at better than 70 % accuracy. J. Mol. Biol 232, 584-599.
  • ROST, B. (1996) PHD: predicting one-dimensional protein structure by profile based neural networks. Meth. Enzymol. 266, 525-539.
  • SALAMOV, A. and SOLOVYEV, V. (1995) Prediction of protein secondary structure by combining nearest-neighbor algorithms and multiple sequence alignment. J. Mol. Biol. 247, 11-15.
  • SANCHEZ, R. and SALI, A. (1997) Evaluation of comparative protein structures modeling by MODELLER-3. Proteins Suppl. 1, 50-58.
  • STEFANOWSKI, J. (1998) The rough set based rule induction technique for classification problems. In: Proceedings of 6th European Conference on Intelligent Techniques and Soft Computing EUFIT’98, 109-113.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0015-0008
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.