PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A reliable synthesis of discrete-time Η∞ control. Part I: basic theorems and J-lossless conjugators

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper gives a basis for solving many problems of numerically reliable synthesis of sub-optimal discrete-time control in Η∞. The approach is based on J-lossless factorisations of the delta-domain chain-scattering descriptions of continuous-time plants being controlled. Relevant properties of poles and zeros of chain-scattering models are given. Necessary and sufficient conditions for the existence of stabilising J-lossless conjugators are presented and discussed. Some aspects of numerical conditioning of synthesis of such conjugators are considered. A numerical example illustrating synthesis of stabilising right J-lossless conjugators is also included.
Rocznik
Strony
97--141
Opis fizyczny
Bibliogr. 108 poz., wykr.
Twórcy
  • Control Systems Department, Gdansk University of Technology, ul. Narutowicza 11/12, 80-952 Gdansk Wrzeszcz, Poland
Bibliografia
  • ABELS, J. and BENNER, P. (1999) CAREX (DAREX) - a collection of benchmark examples for continuous-time (discrete-time) Riccati equations. SLI-COT Working Note, 14/16, Katholieke Univ., Leuven, Belgium.
  • ARNOLD, W.F. and LAUB, A.J. (1984) Generalized eigenproblem algorithms and software for algebraic Riccati equations. Proc. IEEE 72(12), 1746-1754.
  • ASTRÖM, K.J., HAGANDER, P. and STERNBY, J. (1984) Zeros of sampled systems. Automatica 20, (1), 31-38.
  • BENNER, P., LAUB, A.J. and MEHRMANN, V. (1995) A collection of benchmark examples for the numerical solution of algebraic Riccati equations. I: continuous-time case, II: discrete-time case. TU Chemnitz-Zwickau Techn. Report, 95-22/95-23, Fakultät für Mathematik, TU Chemnitz-Zwickau, Germany.
  • BENNER, P., LAUB, A.J. and MEHRMANN, V. (1997) Benchmarks for the numerical solution of algebraic Riccati equations. IEEE Control Systems Mag. 17(5), 18-28.
  • BOGNAR, J. (1974) Indefinite Inner Product Spaces. Springer Verlag, Berlin, Heidelberg.
  • BUNSE-GERSTNER, A., BYERS, R. and MEHRMANN, V. (1992) A chart of numerical methods for structured eigenvalue problems. SIAM Journ. Matrix Anal. Appl. 13(2), 419-453.
  • CHENG, H.W. and YAU, S.S.T. (1997) More explicit formulas for the matrix exponential. Linear Algebra Appl. 262, 131-163.
  • CHRISTOV, N.D., KONSTANTINOV, M.M. and PETKOV, P.H. (2005) Improved perturbation bounds for the continuous-time H∞-optimization problem. Proc. 16th IFAC World Congress, Prague, Czech Republic, CD-ROM.
  • COLLINS JR, E.G., HADDAD. W.M. and CHALLEBOINA, V. (1997) Robustness analysis in the delta-domain using fixed-structure multipliers. Proc. 36th Conf. Decision and Control, San Diego, CA, 3286-3291.
  • COLLINS JR, E.G. and SONG. T. (1999) A delta operator approach to discrete-time H∞ control. Int. Journ. Control 72(4), 315-320.
  • CONWAY, J.B. (1978) Functions of One Complex Variable. Springer Verlag, New York, Heidelberg.
  • DATTA, B.N. (2004) Numerical Methods for Linear Control Systems. Elsevier Academic Press, Amsterdam, Boston.
  • DEVILDE, P. and DYM. H. (1981) Lossless chain-scattering matrices and optimum linear prediction: the vector case. Circuit Theory Appl. 9(2), 135-175.
  • DULLERUD, G.E. and PAGANINI, F. (2000) A Course in Robust Control Theory. Springer Verlag, New York, Berlin.
  • FAN, H.H. (1997) A structural view of asymptotic convergence speed of adaptive OR filtering algorithms - Part II: Finite precision implementation. IEEE Trans. Signal Processing 45(6). 1458-1472.
  • FAN, H.H. and LIU, X. (1994) Delta Levinson and Schur-type RLS algorithms for adaptive signal processing. IEEE Trans. Signal Processing 42(7), 1629-1639.
  • FEINTUCH, A. (1998) Robust Control Theory in Hilbert Space. Springer Verlag, New York, Berlin.
  • FEUER, A. and MIDDLETON, R.H. (1995) Conditioning of LMS algorithms with fast sampling. IEEE Trans. Automatic Control 43(8), 1978-1981.
  • FRANCIS, B.A. (1987) A Course in H∞ Control Theory. Springer Verlag, Berlin, Heidelberg.
  • FUHRMANN, P.A. (1996) A Polynomial Approach to Linear Algebra. Springer Verlag, New York, Berlin.
  • GAHINET, P. and LAUB, A.J. (1997) Numerically reliable computation of optimal performance in singular H∞ control. SIAM Journ. Control Optim. 35(5), 1690-1710.
  • GENIN, Y., VAN DOOREN, P., KAILATH, T., DELOSME, J. and MORF, M. (1983) On Σ-lossless transfer functions and related questions. Linear Algebra Appl. 50, 251-275.
  • GESSING, R. (1993) About some properties of discrete-time transfer functions for small sampling periods. Proc. 2nd European Control Conf., Gronin-gen, The Netherlands 3, 1699-1702
  • GESSING, R. (2002) Whether the delta operator models are really better for small sampling periods. Proc. 15th IFAC World Congress, Barcelona, Spain, T-We-M21 (CD-ROM).
  • GOODWIN, G.C., MIDDLETON, R.H.and POOR, H.V. (1992) High-speed digital signal processing and control. Proc. IEEE 80(2), 240-259.
  • GREEN, M. (1992) H∞ controller synthesis by J-lossless coprime factorisation. SIAM Journ. Control Optim. 30(3), 522-547.
  • GREEN, M., GLOVER, K., LIMEBEER, D.J.N. and DOYLE, J.C. (1990) A spectral factorization approach to H∞ Control. SIAM Journ. Control Optim. 28(6), 1350-1371.
  • GREEN, M. and LIMEBEER, D.J.N. (1995) Linear Robust Control. Prentice Hall, Inc., Englewood Cliffs, N.J.
  • HARA, S., IWASAKI, T. and SHIOKATA, D. (2006) Robust PID control using generalized KYP synthesis. IEEE Control Systems Mag. 26(1), 80-91.
  • HASSIBI, B., SAVED, A.H. and KAILATH, T. (1999) Indefinite-Quadratic Estimation and Control. A Unified Approach to H2 and H∞ Theories. SIAM, Philadelphia, PA.
  • HENDERSON, H.V. and SEARLE, S.S. (1981) The vec-permutation matrix, the vec operator and Kronecker products: A review. Linear and Multilinear Algebra 9, 271-288.
  • HICHAM, N.J. (1996) Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, PA.
  • HICHAM, N.J., KONSTANTINOV, M., MEHRMANN, V. and PETKOV, P. (2004) The sensitivity of computational control problems. IEEE Control Systems Mag. 24(1), 28-43.
  • HUNG, Y.S. and CHU, D. (1998) (J. J’)-lossless factorisation for discrete-time systems. Int. Journ. Control 71(3), 517-533.
  • IGLESIAS, P. A. and GLOVER, K. (1991) State-space approach to discrete-time H∞ control. Int. Journ. Control 54(5), 1031-1073.
  • IONESCU, V., OARĀ, C. and WEISS, M. (1997) General matrix pencil techniques for the solution of algebraic Riccati equations: a unified approach. IEEE Trans. Automatic Control 42(8), 1085-1097.
  • IONESCU, V., OARĀ, C. and WEISS, M. (1999) Generalised Riccati Theory and Robust Control. John Wiley and Sons, Chichester, New York.
  • IONESCU, V. and WEISS, M. (1992) On computing the stabilizing solution of the discrete-time Riccati equation. Linear Algebra Appl. 174, 229-238.
  • IONESCU, V. and WEISS, M. (1993) Two-Riccati formulae for the discrete-time H∞ control problem. Int. Journ. Control 57(1), 141-195.
  • JOHNSON, J.C. and PHILLIPS, C.L. (1971) An algorithm for the computation of the integral of the state transition matrix. IEEE Trans. Automatic Control 16(2), 204-205.
  • KAILATH, T. (1980) Linear Systems. Prentice Hall, Inc., Englewood Cliffs, N.J.
  • KAILATH, T., SAVED, A.H. and HASSIBI, B. (2000) Linear Estimation. Prentice Hall, Inc., Upper Saddle River, N.J.
  • KENNEY, C., LAUB. A.J. and WETTE, M. (1989) A stability-enhancing scaling procedure for Schur-Riccati solvers. Systems Control Letters 12(2), 241-250.
  • KIMURA, H. (1989) Conjugation, interpolation and model matching in. H∞. Int. Journ. Control 49 (1), 269 307.
  • KIMURA, H. (1991) Generalized chain-scattering approach to H∞ control problems. In: S.P. Bhattcharyya, L.H. Keel, eds., Control of Uncertain Dynamic Systems. CRC Press, Boca Raton, FL, 21-38.
  • KIMURA, H. (1992a) (J. J’)-lossless factorisation using conjugations of zero and pole extractions. In: S. Hosoe, ed.. Robust Control. Springer Verlag, Berlin, Heidelberg, 1-8.
  • KIMURA, H. (1992b) (J, J’)-lossless factorization based on conjugation. Systems Control Letters 19(1), 95-109.
  • KIMURA, H. (1995) Chain-scattering representation, J-lossless factorization and H∞ control. Journ. Math. Systems Estimation Control 5(2), 203-255.
  • KIMURA, H. (1997) Chain-Scattering Approach to H∞ Control. Birkhaüser, Boston, Basel.
  • KIMURA, H. and OKUNISHI, F. (1995) Chain-scattering approach to control system design. In: A. Isidori. ed., Trends in control. A European perspective. Springer Verlag, Berlin, Heidelberg, 151-171.
  • KONGPRAWECHNON, W. and KIMURA. H. (1996) J-lossless conjugation and factorization for discrete-time systems. Int. Journ. Control 65(5), 867-884.
  • KONGPRAWECHNOK, W. and KIMURA, H. (1998) J-lossless factorization and H∞ control for discrete-time systems. Int. Journ. Control 70(3), 423-446.
  • KONSTANTINOV, M., GU, D.W., MEHRMANN, V. and PETKOV, P. (2003) Perturbation Theory for Matrix Equations. Elsevier Science, North-Holland, Amsterdam, Boston.
  • KONSTANTINOV, M., PETKOV. P.M. arid CHRISTOV. N.D. (1995) Conditioning of the continuous-time H∞ optimisation problem. Proc. 3rd European Control Conf., Rome, Italy, 613 618.
  • LANCASTER, P. and RODMAN, L. (1995) Algebraic Riccati Equations. Clarendon Press, Oxford.
  • LAUB, A.J. (1979) A Schur method for solving algebraic Riccati equations. IEEE Trans. Automatic Control 24(6), 913-921.
  • LAUB, A.J. (1991) Invariant subspace methods for the numerical solution of Riccati equations. In: S. Bittani. A.J. Laub and J.C. Willems, eds., The Riccati Equation. Springer Verlag, Berlin, Heidelberg, 163-196.
  • LEE, P.H., KIMURA, H. and Son, Y.C. (1996) On the lossless and J-lossless embedding theorems in H∞. Systems and Control Letters 29(1), 1-7.
  • LI, Q. and FAN, H.H. (1996) On properties of information matrices of delta-operator based adaptive signal processing algorithms. IEEE Trans. Signal Processing 45(10), 2454-2467.
  • LIN, W.W., WANG, C.S. and XU, Q.F. (2000) Numerical computation of the minimal H∞. norm of the discrete-time output feedback control problem. SIAM Journ. Numerical Analysis 38(2), 515-547.
  • LINNEMANN, A. and KAWELKE, J. (1999) H∞.-norm and frequency-response computations - sensitivity and a reliable algorithm. IMA Journ. Mathematical Control and Information 16, 249-259.
  • LIU, K.Z. and MITA, T. (1989) Conjugation and H∞. control of discrete-time systems. Int. Journ. Control 50(4), 1435-1460.
  • MEYER, C.D. (2000) Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia, PA.
  • MIDDLETON, R.H. and GOODWIN, G.C. (1986) Improved finite word length characteristics in digital control using delta operators. IEEE Trans. Automatic Control 31(11), 1015-1021.
  • MIDDLETON, R.H. and GOODWIN, G.C. (1990) Digital Control and Estimation. Prentice Hall: Englewood Cliffs, N.J.
  • MOLER, C. and VAN LOAN, C.F. (1978) Nineteen dubious ways to compute the exponential of a matrix. SIAM Review 20(4), 801-836.
  • NEUMAN, C.P. (1993a) Transformations between delta and forward shift operator transfer function models. IEEE Trans. Systems, Man, and Cybernetics 23(1), 295-296.
  • NEUMAN, C.P. (1993b) Properties of the delta operator model of dynamic physical systems. IEEE Trans. Systems, Man, and Cybernetics 23(1), 296-301.
  • NINNESS, B.M. and GOODWIN, G.C. (1991) The relationship between discrete time and continuous time linear estimation. In: N.K. Sinha and G.P. Rao, eds., Identification of Continuous-Time Systems. Kluwer Academic Publishers, Dordrecht, 79-122
  • OVERTON, M.L. (2001) Numerical Computing with IEEE Floating Point Arithmetic. SIAM, Philadelphia, PA.
  • PAPPAS, T., LAUB, A.J. and SANDELL, N.R. (1980) On the numerical solution of the discrete-time algebraic Riccati equations. IEEE Trans. Automatic Control 25(4), 631-641.
  • PETKOV, P.H., CHRISTOV, N.D. and KONSTANTINOV, M.M. (1987) On the numerical properties of the Schur approach for solving the matrix Riccati equation. Systems and Control Letters 9(2), 197-201.
  • PETKOV, P.M., KONSTANTINOV, M.M. and MEHRMANN, V. (1998) DGRSVX and DMSRIC: Fortran 77 subroutines for solving continuous-time matrix algebraic Riccati equations with condition and accuracy estimates. TU Chemnitz-Zwickau Techn. Report, SFB393/98-16, Fakultät für Mathematik, TU Chemnitz-Zwickau, Germany.
  • PREMARATNE, K., SALVI, R., HABIB, N.R. and LE GALL, J.P. (1994) Delta-operator formulated discrete-time approximations of continuous-time systems. IEEE Trans. Automatic Control 39(3), 581-585.
  • RAO. G.P. and SINHA, N.K. (1991) Continuous-time models and approaches. In: N.K. Sinha and G.P. Rao, eds.. Identification of Continuous-Time Systems. Kluwer Academic Publishers. Dordrecht, 1-15.
  • ROSTGAARD, M., POULSEN, N.K. and RAVN, O. (1993) A rapprochement between discrete-time operators. Proc. 2nd European Control Conf., Groningen, The Netherlands, 426-431.
  • SABERI, A., SANNUTI, P. and CHEN, B.M. (1995) H2 Optimal Control. Prentice-Hall, Inc., Englewood Cliffs, N.J.
  • SALGADO, M., MIDDLETON, R. and GOODWIN, G.C. (1988) Connection between continuous and discrete Riccati equations with applications to Kalman filtering IEE Proc., Control Theory and Appl. 135(1), 28-34.
  • SKOGESTAD, S. and POSTLETHWAITE, I. (1996) Multivariable Feedback Control. John Wiley and Sons Ltd, Chichester, New York.
  • STOORVOGEL, A. (1992a) The H∞ Control Problem. A State Space Approach. Prentice Hall, Inc., New York.
  • STOORVOGEL, A. (1992b) The discrete time H∞. control problem with measurement feedback. SIAM Journ. Control Optim. 30(1), 182-202.
  • STOORVOGEL, A. and SABERI. A. (1998) The discrete algebraic Riccati equation and linear matrix inequality. Linear Algebra Appl. 274(3), 317-365.
  • SUCHOMSKI, P. (1995) J-lossless coprime factorisation approach to weighted mixed sensitivity sub-optimal synthesis in H∞. Proc. 2nd Int. Symp. Methods and Models in Automation and Robotics MMAR’95, Międzyzdroje, Poland 1, 211-216.
  • SUCHOMSKI, P. (2001a) Numerically robust delta-domain solutions to discrete-time Lyapunov equations. Systems and Control Letters 47(4), 319-326.
  • SUCHOMSKI, P. (2001b) Numerical conditioning of delta-domain Lyapunov and Riccati equations. IEE Proc., Control Theory and Appl. 148(6), 497-501.
  • SUCHOMSKI, P. (2001c) Robust design in delta domain for SISO plants: phase advance and phase lag controllers. Systems Analysis Modelling Simulation 41(3), 503-549.
  • SUCHOMSKI, P. (2002) A J-lossiess factorization approach to H∞ control in delta domain. Automation 38(10), 1807-1814.
  • SUCHOMSKI, P. (2003a) J-lossless and extended J-lossless factorizations approach for delta-domain H∞ control. Int. Journ. Control 76(8), 794-809.
  • SUCHOMSKI, P. (2003b) Remarks about numerical conditioning of discrete-time Riccati equations. IEE Proc., Control Theory and Appl. 150(5), 449-456.
  • SUCHOMSKI, P. (2003c) Numerically robust synthesis of discrete-time H∞ estimators based on J-lossless factorisations. Control and Cybernetics 32(4), 761-802.
  • SUCHOMSKI, P. (2003d) Robust pole placement in delta domain for SISO plants. Systems Analysis Modelling Simulation 43(4), 483-512.
  • SUCHOMSKI, P. (2003e) J- lossless factorisations for robus H∞-control in delta-domain. Systems Analysis Modelling Simulation 43(4), 525-555.
  • SUCHOMSKI, P. (2004) Synthesis of Discrete-Time Robust Control Algorithms. Systems Research Institute, Polish Academy of Science, Warsaw, in Polish.
  • TSAI, M.C. and POSTLETHWAITE, I. (1991) On J-lossless co-prime factorizations and H∞ control. Int. Journ. Robust Nonlin. Control 1(1), 47-68.
  • TSAI, M.C. (1995) J-lossIess coprime factorisation approach to weighted mixed sensitivity sub-optimal synthesis in H∞ Proc. 2nd Int. Symp. Methods and Models in Automation and Robotics MMAR’95, Międzyzdroje, Poland 1, 211-216.
  • TSAI, M.C. and TSAI, C.S. (1992) Formulation of the H∞ control problem by using chain-scattering matrix description. Proc. American Control Conf., Chicago, 1870-1871.
  • TSAI, M.C. and TSAI, C.S. (1993) A chain scattering-matrix description approach to H∞ control. IEEE Trans. Automatic Control 38(9), 1416-1421.
  • TSAI, M.C. and TSAI, C.S. I. (1995) A transfer matrix framework approach to the synthesis of H∞ controllers. Int. Journ. Robust Nonlin. Control 5(2), 155-173.
  • TSAI, M.C., TSAI, C.S. and SUN, Y.Y. (1993) On discrete-time H∞ control: A J-lossless coprime factorization approach. IEEE Trans. Automatic Control 38(7), 1143-1147.
  • VAN DOOREN, P.M. (1981) A generalized eigenvalue approach for solving Riccati equations. SIAM Journ. Sci. Stat. Comput. 2(2), 121-135.
  • VAN DOOREN, P.M. (2004) The basic developing numerical algorithms. IEEE Control Systems Mag. 24(1), 18-27.
  • VIDYASAGAR, M. (1985) Control System Synthesis - A Factorisation Approach. MIT Press, Cambridge, MA.
  • WAHLBERG, B. (1988) Limit results for sampled systems. Int. Journ. Control 48(3), 1267-1283.
  • WAHLBERG, B. (1990) The effects of rapid sampling in system identification. Automatica 26(l), 167-170.
  • WARD, R.C. (1977) Numerical computation of the matrix exponential with accuracy estimate. SIAM Journ. Numerical Analysis 14(3), 600-610.
  • WILLIAMSON, D. (1991) Digital Control and Implementation. Finite Word-length Considerations. Prentice Hall, Englewood Cliffs, N.J.
  • ZHOU, K., DOYLE, J.C. and GLOVER, K. (1996) Robust and Optimal Control. Prentice Hall, Upper Saddle River, NJ.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0015-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.