PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Nonessential objective functions in linear multiobjective optimization problems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In multiobjective (vector) optimization problems, among the given objective functions there exist some, which do not influence the set of efficient solutions. These objective functions are said to be nonessential. In this paper we present a new method to decide if a given linear objective function is nonessential or not.
Rocznik
Strony
873--880
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
  • Institute of Mathematics and Physics, Białystok Technical University, Wiejska 45A, 15-351 Białystok, Poland, abmalina@pb.bialystok.pl
Bibliografia
  • BENSON, H.P. (1978) Existence of efficient solutions for vector maximization problem. Journal of Optimization Theory and Applications 26 (4), 569-580.
  • GAL, T. and LEBERLING, T.(1977) Redundant objective functions in linear vector maximum problems and their determination. European Journal of Operational Research 1 (3), 176-184.
  • GAL, T. (1980) A note of size reduction of the objective functions matrix in vector maximum problems. In: Fandel, G.T. and Gal, T., eds., Multiple Criteria Decision Making; Theory and Application. Lecture Notes in Economic and Mathematical System, 177, 74-84, Springer-Verlag, Berlin-Heidelberg.
  • GAL, T. and HANNE, T. (1999) Consequences of dropping nonessential objectives for the application of MCDM methods. European Journal of Operational Research 119, 373-378.
  • GAL, T. and HANNE, T. (2006) Nonessential objectives within network approaches for MCDM. European Journal of Operational Research 168, 584-592.
  • GALAS, Z., NYKOWSKI, I. and ŻÓŁKIEWSKI, Z. (1987) Prograrmowanie wie-lokryterialne. PWE, Warszawa.
  • GUTENBAUM, J. and INKIELMAN, M. (1998) Multicriterial decision-making by comparison of the Pareto-optimal sets for a reduced number of objectives. In: Proceedings of the 25th Conference on Macromodels and Modelling Economies in Transition, Jurata 3-4 December, 2, 15-25.
  • MALINOWSKA, A.B. (2002) Istotność skalarnych funkcji ocen w zadaniach wektorowej optymalizacji. Ph.D. thesis, Polish Academy of Science, Warsaw.
  • MALINOWSKA, A.B. (2002) Changes of the set of efficient solutions by extending the number of objectives and its evaluation. Control and Cybernetics 31 (4), (964-974).
  • TAMURA, K. and MIURA, S. (1979) Necessary and sufficient conditions for local and global nondominated solutions in decision problems with multi-objectives. Journal of Optimization Theory and Applications 28 (4), 501-523.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0014-0026
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.