Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
For a class of one-dimensional holomorphic maps ƒ of the Riemann sphere we prove that for a wide class of potentials φ the topological pressure is entirely determined by the values of φ on the repelling periodic points of ƒ. This is a version of a classical result of Bowen for hyperbolic diffeomorphisms in the holomorphic non-uniformly hyperbolic setting.
Wydawca
Rocznik
Tom
Strony
53--62
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
autor
- Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, P.O. Box 21, 00-956 Warszawa, Poland, gelfert@pks.mpg.de
Bibliografia
- [1] A. Arbieto and C. Matheus, Fast decay of correlations of equilibrium states of open classes of non-uniformly expanding maps and potentials, preprint, 2006.
- [2] L. Carleson and T. Gamelin, Complex Dynamics, Springer, New York, 1993.
- [3] Y. M. Chung and M. Hirayama, Topological entropy and periodic orbits of saddle type for surface diffeomorphisms, Hiroshima Math. J. 33 (2003), 189-195.
- [4] M. Denker and M. Urbański, Ergodic theory of equilibrium states for rational maps, Nonlinearity 4 (1991), 103-134.
- [5] A. Freire, A. Lopes, and R. Mane, An invariant measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), 45-62.
- [6] K. Gelfert and C. Wolf, Topological pressure via periodic points, Trans. Amer. Math. Soc., to appear.
- [7] F. Hofbauer and G. Keller, Equilibrium states for piecewise monotonic transformations, Ergodic Theory Dynam. Systems 2 (1982), 23-43.
- [8] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. Inst. Hautes Etudes Sci. 51 (1980), 137-173.
- [9] M. Lyubich, Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems 3 (1983), 351-385.
- [10] S. Newhouse, Continuity properties of entropy, Ann. of Math. (2) 129 (1989), 215-235.
- [11] F. Przytycki, Expanding repellers in limit sets for iteration of holomorphic functions, Fund. Math. 186 (2005), 85-96.
- [12] F. Przytycki, J. Rivera-Letelier, and S. Smirnov, Equality of pressures for rational functions, Ergodic Theory Dynam. Systems 24 (2004), 891-914.
- [13] F. Przytycki and M. Urbanski, Fractals in the Plane—the Ergodic Theory Methods, Cambridge Univ. Press, to appear.
- [14] D. Ruelle, Thermodynamic Formalism, Cambridge Univ. Press, Cambridge, 2004.
- [15] P. Walters, An Introduction to Ergodic Theory, Grad. Texts in Math. 79, Springer, New York, 1981
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0013-0022