Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We consider a dynamic frictionless contact problem for a viscoelastic material with damage. The contact is modeled with normal compliance condition. The adhesion of the contact surfaces is considered and is modeled with a surface variable, the bonding field, whose evolution is described by a first order differential equation. We establish a variational formulation for the problem and prove the existence and uniqueness of the solution. The proofs are based on the theory of evolution equations with monotone operators, a classical existence and uniqueness result for parabolic inequalities, and fixed point arguments.
Wydawca
Rocznik
Tom
Strony
17--34
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
autor
- Department of Mathematics, University of Setif, 19000 Setif, Algeria, s_elmanih@yahoo.fr
Bibliografia
- [1] V. Barbu, Optimal Control of Variational Inequalities, Pitman, Boston, 1984.
- [2] O. Chau, J. R. Fernandez, M. Shillor and M. Sofonea, Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion, J. Comput. Appl. Math. 159 (2003), 431-465.
- [3] 0. Chau, M. Shillor and M. Sofonea, Dynamic frictionless contact with adhesion, J. Appl. Math. Phys. (ZAMP) 55 (2004), 32-47.
- [4] M. Cocu and R. Rocca, Existence results for unilateral quasistatic contact problems with friction and adhesion, Math. Model. Numer. Anal. 34 (2000), 981-1001.
- [5] G. Duvaut and J.-L. Lions, Les Inequations en Mecanique et en Physique, Springer, Berlin, 1976.
- [6] J. R. Fernandez, M. Shillor and M. Sofonea, Analysis and numerical simulations of a dynamic contact problem with adhesion, Math. Comput. Modelling 37 (2003), 1317-1333.
- [7] M. Fremond, Equilibre des structures qui adherent a leur support, C. R. Acad. Sci. Paris Ser. II 295 (1982), 913-916.
- [8] —, Adherence des solides, J. Mecanique Theor. Appliquee 6 (1987), 383-407.
- [9] M. Fremond and B. Nedjar, Damage in concrete: the unilateral phenomenon, Nuclear Engrg. Design 156 (1995), 323-335.
- [10] —, —, Damage, gradient of damage and principle of virtual work, Int. J. Solids Structures 33 (1996), 1083-1103.
- [11] M. Fremond, K. L. Kuttler, B. Nedjar and M. Shillor, One-dimensional models of damage, Adv. Math. Sci. Appl. 8 (1998), 541-570.
- [12] W. Han, K. L. Kuttler, M. Shillor and M. Sofonea, Elastic beam in adhesive contact, Int. J. Solids Structures 39 (2002), 1145-1164.
- [13] W. Han, M. Shillor and M. Sofonea, Variational and numerical analysis of a quasistatic viscoelastic problem with normal compliance, friction and damage, J. Comput. Appl. Math. 137 (2001), 377-398.
- [14] L. Jianu, M. Shillor and M. Sofonea, A viscoelastic bilateral frictionless contact problem with adhesion, Appl. Anal. 80 (2001), 233-255.
- [15] M. Raous, L. Cangemi and M. Cocu, A consistent model coupling adhesion, friction, and unilateral contact, Comput. Methods Appl. Mech. Engrg. 177 (1999), 383-399.
- [16] M. Rochdi, M. Shillor and M. Sofonea, Analysis of a quasistatic viscoelastic problem with friction and damage, Adv. Math. Sci. Appl. 10 (2002), 173-189.
- [17] J. Rojek and J. J. Telega, Contact problems with friction, adhesion and wear in orthopaedic biomechanics. I: General developments, J. Theor. Appl. Mech. 39 (2001), 655-677.
- [18] M. Shillor, M. Sofonea and J. J. Telega, Models and Variational Analysis of Quasistatic Contact, Lecture Notes in Phys. 655, Springer, Berlin, 2004.
- [19] M. Sofonea and A. Matei, Elastic antiplane contact problem with adhesion, J. Appl. Math. Phys. (ZAMP) 53 (2002), 962-972.
- [20] M. Sofonea, W. Han and M. Shillor, Analysis and Approximation of Contact Problems with Adhesion or Damage, Pure Appl. Math. 276, Chapman-Hall/CRC Press, New York, 2006.
- [21] P. Suquet, Plasticite et homogeneisation, These de Doctorat d'Etat, Univ. Pierre et Marie Curie, Paris 6, 1982.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0013-0019