Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We show how to reduce the assumptions in consistency strength used to prove several theorems on universal indestructibility.
Wydawca
Rocznik
Tom
Strony
1--6
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
autor
autor
- Department of Mathematics, Baruch College of CUNY, New York, NY 10010, U.S.A. and The CUNY Graduate Center, Mathematics 365 Fifth Avenue New York, NY 10016, U.S.A., awapter@alum.niit.edu
Bibliografia
- [1] A. Apter, Universal indestructibility is consistent with two strongly compact cardinals, Bull. Polish Acad. Sci. Math. 53 (2005), 131-135.
- [2] A. Apter and M. Gitik, The least measurable can be strongly compact and indestructible, J. Symbolic Logic 63 (1998), 1404-1412.
- [3] A. Apter and J. D. Hamkins, Universal indestructibility, Kobe J. Math. 16 (1999), 119-130.
- [4] J. D. Hamkins, Gap forcing, Israel J. Math. 125 (2001), 237-252.
- [5] —, Gap forcing: generalizing the Levy-Solovay theorem, Bull. Symbolic Logic 5 (1999), 264-272.
- [6] A. Kanamori, The Higher Infinite, Springer, Berlin, 1994.
- [7] R. Laver, Making the supercompactness of Κ indestructible under κ-directed closed forcing, Israel J. Math. 29 (1978), 385-388.
- [8] A. Levy and R. Solovay, Measurable cardinals and the continuum hypothesis, ibid. 5 (1967), 234-248.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0013-0017