PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Optimal control for elasto-orthotropic plate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The optimal control problems and a weight minimization problem are considered for elastic three-layered plate with inner obstacle and friction condition on a part of the boundary. The state problem is represented by a variational inequality and the design variables influence both the coefficients and the set of admissible state functions. We prove the existence of a solution to the above-mentioned problem on the basis of a general theorem on the control of variational inequalities. Next, the approximate optimization problem is proved on the basis of the general theorem for the continuous problem. When the mesh/size tends to zero, then any sequence of appropriate solutions converges uniformly to a solution of the continuous problem. Finally, the application to the optimal design of unilaterally supported of rotational symmetrical load elastic annular plate is presented.
Rocznik
Strony
219--278
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
autor
  • Slovak University of Technology, Faculty of Civil Engineering, Starohorska 2, Bratislava, Slovak Republic
Bibliografia
  • ADAMS, R.A. (1975) Sobolev Spaces. Academic Press, New York.
  • BARBU, V. (1987) Optimal Control of Variational Inequalities. Pitman Advanced Publishing Program, Boston, London.
  • BEGIS, D. and GLOWINSKI, R. (1975) Application de la mèthode des elements finis à l’approximation d’un problème de domaine optimal. Mèthodes de rèsolution des problèmes approches. Applied Mathematics. Optimsation 2, 130-169.
  • BOCK, I. and LOVIŠEK, J. (1987) Optimal control problems for variational inequalities with controls in coefficients. Applications of Mathematics 32, 301-314.
  • BREZZI, F. and FORTIN, M. (1991 Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York.
  • CEA, J. (1971) Optimisation. Théorie et algorithmes. Dunod. Paris.
  • CIARLET, P.G. (1978) The Finite Element Method for Elliptic Problems. North Holland, Amsterdam.
  • COMODI, M.I. (1985) Approximation of bending plate problem with a boundary unilateral constraint. Numer. Math. 47, 435-458.
  • DUVAUT, J. and LIONS, L. (1972) Les inéquations en mécanique et en physique. Dunod. Paris.
  • EKELAND, I. and TEMAN, R. (1974) Analyse convexe et problèmes variationnels. Dunod Paris.
  • GLOWINSKI, R., LIONS, J.L. and TREMOLIERES, R. (1981) Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam.
  • HAUG, E., CHOI. K.K. and KOMKOV, V. (1986) Design Sensitivity Analysis of Structural Systems. Academic Press, New York.
  • HLAVAČEK, I. and LOVIŠEK, J. (2001) Control in obstacle-pseudoplate problems with friction on the boundary. Optimal design and problems with uncertain data. Applicationes Mathematicae 28 (4), 407-426.
  • KHLUDNEV, A.M. and SOKOLOWSKI, J. (1997) Modelling and Control in Solid Mechanics. Birkhäuser.
  • KINDERLEHRER, D. and STAMPACCHIA, G. (1980) An Introduction to Variational Inequalities and Their Applications. Academic Press, New York.
  • LIONS, J.L. (1969) Quelques mèthodes de résolution des problèmes aux limites nonlinéaires. Dunod.
  • LITVINOV, W. (2000) Optimization in Elliptic Problems with Applications to Mechanics of Deformable Bodies and Fluid Mechanics. Birkhäuser.
  • LOVIŠEK, J. and KRÁLIK, J. (2001) Optimal control of the elastic plate with inner obstacles. In: Budowa i Eksploatacja Maszyn, 61, Proceedings of Euroconference on Computational Mechanics and Engineering Practice, Szczyrk, Poland, Sept. 19-21, 217-224.
  • MASSON, J. (1985) Methods of Functional Analysis for Application in Solid Mechanics. Elsevier.
  • MOSCO, U. (1971) Convergence of convex sets and solutions of variational inequalities. In: G. Geymonant, ed.. Constructive Aspects of Functional Analysis, II. Centre Intern Matem., Estivo, 497-682.
  • PANAGIOTOPOULOS, P.D. (1985) Inequality Problems in Mechanics and Applications. Birkhäuser, Basel.
  • REDDY, J.N. (2003) Mechanics of Laminate Composite Plates and Shells. Theory and Analysis. CRC Press, Boca Raton, London.
  • REISMANN, H. (1988) Elastic Plates - Theory and Applications. John Wiley and Sons, New York, Chichester.
  • RODRIGUES, J.F.(1987) Obstacle Problem in Mathematical Physics. North-Holland.
  • SALAC, P. (1995) Shape optimization of elastic axisymmetric plate of an elastic foundation. Applications of Mathematics 40 (4), 319-338.
  • SCHWARTZ, L. (1966) Théorie des distributions. Herman.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0011-0029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.