Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A multifunction φ: X → Y is n-valued if φ(x) is an unordered subset of n points of Y for each x ∈ X. The (continuous) n- valued multimaps φ: S1 → S1 are classified up to homotopy by an integer-valued degree. In the Nielsen fixed point theory of such multimaps, due to Schirmer, the Nielsen number N(φ) of an n-valued φ: S1 → S1 of degree d equals \n - d\ and φ is homotopic to an n-valued power map that has exactly \n - d\ fixed points. Thus the Wecken property, that Schirmer established for manifolds of dimension at least three, also holds for the circle. An n-valued multimap φ: S1 → S1 of degree d splits into n selfmaps of S1 if and only if d is a multiple of n.
Wydawca
Rocznik
Tom
Strony
153--162
Opis fizyczny
Bibliogr. 10 poz.
Twórcy
autor
- Department of Mathematics, University of California, Los Angeles, CA 90095-1555, U.S.A., rfb@math.ucla.edu
Bibliografia
- [1] S. Banach und S. Mazur, Über mehrdeutige stetige Abbildungen, Studia Math. 5 (1934), 174-178.
- [2] C. Berge, Topological Spaces, Oliver fe Boyd, 1963.
- [3] S. Hu, Homotopy Theory, Academic Press. 1959.
- [4] B. Jiang, On the least number affixed points, Amer. J. Math. 102 (1980), 749-763.
- [5] —, Fixed points and braids, II, Math. Ann. 272 (1985), 249-256.
- [6] B. O'Neill, Induced homology homomorphisms for set-valued maps. Pacific J. Math. 7 (1957), 1179-1184.
- [7] H. Schirmer, Fix-finite approximations of n-valued multif unctions, Fund. Math. 121 (1984), 73-80.
- [8] —, An index and Nielsen number for n-valued multifunctions, ibid. 124 (1984), 207-219.
- [9] H. Schirmer, A minimum theorem for n-valued multifunctions, ibid. 126 (1985), 83-92.
- [10] F. Wecken, Fixpunktklassen, III, Math. Ann. 118 (1942), 544-577.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0011-0025
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.