Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Emmanuele showed that if Σ is a σ-algebra of sets, Χ is a Banach space, and μ : Σ → Χ is countably additive with finite variation, then μ(Σ) is a Dunford-Pettis set. An extension of this theorem to the setting of bounded and finitely additive vector measures is established. A new characterization of strongly bounded operators on abstract continuous function spaces is given. This characterization motivates the study of the set of (sb) operators. This class of maps is used to extend results of P. Saab dealing with unconditionally converging operators. A characterization of the existence of a countably additive, non-strongly bounded representing measure in terms of c0 is presented. This characterization resolves a question posed in 1970.
Wydawca
Rocznik
Tom
Strony
63--73
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
autor
autor
- Department of Mathematics, University of North Texas Denton, TX 76203-1430, U.S.A., bator@unt.edu
Bibliografia
- [1] C. A. Abbott, E. M. Bator, R. G. Bilyeu and P. W. Lewis, Weak precompactness, strong boundedness, and weak complete continuity, Math. Proc. Cambridge Philos. Soc. 108 (1990), 325-335.
- [2] K. Andrews, Dunford-Pettis sets in the space of Bochner integrable functions, Math. Ann. 241 (1979), 35-41.
- [3j R. G. Bartle, N. Dunford and J. T. Schwartz, Weak compactness and vector measures, Canad. J. Math. 7 (1955), 289-305.
- [4] J. Batt and J. Berg, Linear bounded transformations on the space of continuous functions, J. Funct. Anal. 4 (1969), 215-239.
- [5] F. Bombal and P. Cembranos, Characterization of some classes of operators on spaces of vector-valued continuous functions, Math. Proc. Cambridge Philos. Soc. 97 (1985), 137-146.
- [6] J. K. Brooks, On the existence of a control measure for strongly bounded vector measures, Bull. Amer. Math. Soc. 77 (1971), 999-1001.
- [7] J. K. Brooks and R. S. Jewett, On finitely additive vector measures, Proc. Nat. Acad. Sci. U.S.A. 67 (1970), 1294-1298.
- [8] J. K. Brooks and P. W. Lewis, Linear operators and vector measures, Trans. Amer. Math. Soc. 192 (1974), 139-162.
- [9] —, —, Linear operators and vector measures II, Math. Z. 144 (1975), 45-53.
- [10] J. Diestel, A survey of results related to the Dunford-Pettis property, in: Contemp. Math. 2, Amer. Math. Soc., 1980, 15-60.
- [11] —, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, 1984.
- [12] J. Diestel and B. Faires, On vector measures, Trans. Amer. Math. Soc. 198 (1974), 253-271.
- [13] J. Diestel and J. J. Uhl, Jr., Vector Measures, Amer. Math. Soc., Providence, RI, 1977.
- [14] N. Dinculeanu, Vector Measures, Pergamon Press, New York, 1967.
- [15] I. Dobrakov, On integration in Banach spaces, Czechoslovak Math. J. 20 (95) (1970), 511-536.
- [16] N. Dunford and J. Schwartz, Linear Operators, Part I: General Theory, Wiley, New York, 1958.
- [17] G. Emmanuele, Banach spaces in which Dunford-Pettis sets are relatively compact, Arch. Math. (Basel) 58 (1992), 477-485.
- [18] N. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278.
- [19] P. W. Lewis, Regularity conditions and absolute continuity for vector measures, J.. Reine Angew. Math. 247 (1971), 80-86.
- [20] —, Mapping propertzes of Co, Colloq. Math. 80 (1999), 235-244.
- [21] —, Spaces of operators and Co, Studio. Math. 145 (2001), 213-218.
- [22] P. W. Lewis and J. P. Ochoa, The range of a representing measure, Math. Proc. Cambridge Philos. Soc. 124 (1998), 365-369.
- [23] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Springer, Berlin, 1977.
- [24] C. E. Rickart, Decomposition of additive set functions. Duke Math. J. 10 (1943), 653-665.
- [25] P. Saab, Weakly compact, unconditionally converging, and Dunford-Pettis operators on spaces of vector-valued continuous functions. Math. Proc. Cambridge Philos. Soc. 95 (1984), 101-108.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0011-0015