PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the hyperbolic Hausdorff dimension of the boundary of a basin of attraction for a holomorphic map and of quasirepellers

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We prove that the hyperbolic Hausdorff dimension of Fr Ω, the boundary of the simply connected immediate basin of attraction Ω to an attracting periodic point of a rational mapping of the Riemann sphere, which is not a finite Blaschke product in some holomorphic coordinates, or a 2 : 1 factor of a Blaschke product, is larger than 1. We prove a "local version" of this theorem, for a boundary repelling to the side of the domain. The results extend an analogous fact for polynomials proved by A. Zdunik and relies on the theory elaborated by M. Urbanski, A. Zdunik and the author in the late 80-ties. To prove that the dimension is larger than 1, we use expanding repellers in δΩ constructed in [P2]. To reach our results, we deal with a quasi-repeller, i.e. the limit set for a geometric coding tree, and prove that the hyperbolic Hausdorff dimension of the limit set is larger than the Hausdorff dimension of the projection via the tree of any Gibbs measure for a Holder potential on the shift space, under a non-cohomology assumption. We also consider Gibbs measures for Holder potentials on Julia sets.
Rocznik
Strony
41--52
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
  • Mathematics Polish Academy of Sciences, 00-956 Warszawa, Poland
Bibliografia
  • [Bow] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math. 470, Springer, Berlin 1975.
  • [Bro] H. Brolin, Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103-144.
  • [DPU] M. Denker, F. Przytycki and M. Urbański, On the transfer operator for rational functions on the Riemann sphere, Ergodic Theory Dynam. Systems 16 (1996), 255-266.
  • [DU] M. Denker and M. Urbański, Ergodic theory of equilibrium states for rational maps, Nonlinearity 4 (1991), 103-134.
  • [Gor] M. I. Gordin, The central limit theorem for stationary processes, Dokl. Akad. Nauk SSSR 188 (1969), 739-741 (in Russian); English transl.: Soviet Math. Dokl. 10 (1969), 1174-1176.
  • [Hay] N. Haydn, Convergence of the transfer operator for rational maps, Ergodic Theory Dynam. Systems 19 (1999), 657-669.
  • [Mak] N. Makarov, On the distortion of boundary sets under conformal mappings, Proc. London Math. Soc. 51 (1985), 369-384.
  • [Ma] R. Mane, The Hausdorff dimension of invariant probabilities of rational maps, in: Dynamical Systems (Valparaiso, 1986), Lecture Notes in Math. 1331, Springer, 1988, 86-117.
  • [PI] F. Przytycki, Riemann map and holomorphic dynamics, Invent. Math. 85 (1986), 439-455.
  • [P2] —, Expanding repellers in limit sets for iteration of holomorphic functions, Fund. Math. 186 (2005), 85-96.
  • [P3] —, On the Perron-Frobenius-Ruelle operator for rational maps on the Riemann sphere and for Holder continuous functions, Bol. Soc. Brasil. Mat. 20 (1990), 95-125.
  • [P4] —, Accessibility of typical points for invariant measures of positive Lyapunov exponents for iterations of holomorphic maps, Fund. Math. 144 (1994), 259-278.
  • [P5] —, Conical limit sets and Poincare exponent for iterations of rational functions, Trans. Amer. Math. Soc. 351 (1999), 2081-2099.
  • [PR] F. Przytycki and J. Rivera-Letelier, Statistical properties of topological Collet-Eckmann maps, submitted.
  • [PRS] F. Przytycki, J. Rivera-Letelier and S. Smirnov, Equality of pressures for rational functions, Ergodic Theory Dynam. Systems 23 (2004), 891-914.
  • [PS] F. Przytycki and J. Skrzypczak, Convergence and pre-images of limit points for coding trees for iterations of holomorphic maps, Math. Ann. 290 (1991), 425-440.
  • [PU] F. Przytycki and M. Urbański, Fractals in the Plane, Ergodic Theory Methods Cambridge Univ. Press, to appear. Available at http://www.math.unt.edu/~ur-
  • [PUZ] F. Przytycki, M. Urbański and A. Zdunik, Harmonic, Gibbs and Hausdorff measures for holomorphic maps, Part 1, Ann. of Math. 130 (1989), 1-40, Part 2, Studia Math. 97 (1991), 189-225.
  • [PZ] F. Przytycki and A. Zdunik, Density of periodic sources in the boundary of a basin of attraction for iteration of holomorphic maps: geometric coding trees technique, Fund. Math. 145 (1994), 65-77.
  • [Zl] A. Zdunik, Parabolic orbifolds and the dimension of the maximal measure for rational maps, Invent. Math. 99 (1990), 627-649.
  • [Z2] —, Harmonic measure versus Hausdorff measures on repellers for holomorphic maps, Trans. Amer. Math. Soc. 326 (1991), 633-652.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0011-0013
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.