Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
Let 0 < β < α < 1 and let p ∈ (0,1). We consider the functional equation [WZÓR] and its solutions in two classes of functions, namely Z ={φ: R→ R∣ φ is increasing, φ|(−∞,0] = 0, φ|[1,∞) = 1}, C = {φ: R → R∣ φ is continuous, φ|(−∞,0] = 0, φ|[1,∞) = 1}. We prove that the above equation has at most one solution in C and that for some parameters α, β and p such a solution exists, and for some it does not. We also determine all solutions of the equation in Z and we show the exact connection between solutions in both classes.
Wydawca
Rocznik
Tom
Strony
389--399
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
autor
- Institute of Mathematics, Silesian University, Bankowa 14, PL-40-007 Katowice, Poland
autor
- Institut für Mathematik, Karl Franzens Universität, Heinrichstrasse 36, A-8010 Graz, Austria
Bibliografia
- [1] K. Baron, Solutions of iterative functional equations resulting from iterated function systems theory, manuscript.
- [2] L. Bartłomiejczyk, Solutions with big graph of homogeneous functional equations in a single variable, Aequationes Math. 56 (1998), 149-156.
- [3] M. Corsolini, Numeri normali, indipendenza statistica e sistemi moltiplicativi ortogonali nelle basi di numerazione non uniformi, http://www.liberliber.it/biblioteca/tesi/scienze_matematiche_flsiche_e_naturali/.
- [4] —, Dello scommettere su monete truccate, manuscript.
- [5] G. Derfel, Probabilistic method for a class of functional-differential equations, Ukrain. Mat. Zh. 41 (1989), 1322-1327 (in Russian); English transl.: Ukrainian Math. J. 41 (1989), 1137-1141.
- [6] P. Diaconis and D. Freedman, Iterated random functions, SIAM Rev. 41 (1999), 45-76.
- [7] G. L. Forti and L. Paganoni, An iterative method for solving a system of functional equations, Adv. Math. 105 (1994), 111-161.
- [8] R. Kapica, Sequences of iterates of random-valued, vector functions and continuous solutions of a linear functional equation of infinite order, Bull. Polish Acad. Sci. Math. 50 (2002), 447-455.
- [9] S. Łojasiewicz, An Introduction to the Theory of Real Functions, Wiley, Chichester, 1988.
- [10] J. Morawiec, On a linear functional equation, Bull. Polish Acad. Sci. Math. 43 (1995), 131-142.
- [11] —, Some properties of probability distribution solutions of linear functional equations, Aequationes Math. 56 (1998), 81-90.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0009-0038