PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

LQR and predictive control tuned via BDU

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work presents the BDU technique (Bounded Data Uncertainties) and the tuning of the linear quadratic regulator (LQR) via this technique, which considers models with bounded uncertainties. The BDU method is based on constrained game-type formulations, and allows the designer to explicitly incorporate a priori information about bounds on the sizes of the uncertainties into the problem statement. Thus, on the one hand, the uncertainty effect is not over-emphasized, avoiding an overly conservative design and, on the other hand, the uncertainty effect is not under-emphasized, avoiding an overly sensitive to errors design. A feature of this technique consists of its geometric interpretation. The structure of the paper is the following, in the first section, some problems about the least-squares method in the presence of uncertainty are introduced. The BDU technique is shown in the second section and the LQR controller in the third. After that a new guided way of tuning the LQR is offered, taking into account the uncertainties bounds via the BDU. The consequence of this method is that both recursive and algebraic Riccati equations are modified. Finally, some examples are shown and the main conclusions and future work are commented.
Czasopismo
Rocznik
Strony
15--25
Opis fizyczny
Bibliogr. 10 poz., wykr.
Twórcy
autor
  • Department of Systems Engineering and Control, Polytechnic University of Valencia, Camino de Vera 14, P.O. Box 22012 E-46071 Valencia, Spain
autor
autor
Bibliografia
  • [1] Chandrasekaran S., GOLUB M., Gu M., Sayed A. H., Worst-case parameter estimation with bounded model uncertainties, American Control Conference, 1997.
  • [2] Chandrasekaran S., GOLUB M., Gu M., Sayed A. H., Parameter estimation in the presence of bounded data uncertainties, SIMAX, No. 19, 1998, 235-252.
  • [3] Golub G. H., Van Loan Cii. F., Matrix Computations, Johns Hopkins University Press, 1996.
  • [4] Lawson C. L., Hanson R. J., Solving least-squares problems, SIAM, 1995.
  • [5] Nascimento V. H., Sayed A. H., Optimal slate regulation for uncertain state-space models, American Control Conference, Vol. 1, San Diego 1999, 419-424.
  • [6] Ramos C., Sanchis J., Martínez M., Herrero J. M., Sintonizado del LQR y Control Predictivo mediante BDU, XI Congreso Latinoamericano de Control, Preprints ISBN 959-237-117-2, 2004.
  • [7] Sayed A. H., Nascimento V. H., Design criteria for imcertain models with structured and unstructured uncertainties. Robustness in Identification and Control, Vol. 245, Springer Veriag, tendon 1999, 159-173.
  • [8] Sayed A. H., Nascimento V. H., Chandrasekaran S., Estimation and control with bounded data uncertainties. Linear Algebra and its Applications, Vol. 284, Elsevier, 1998, 259-306.
  • [9] Skogestad S., Postlethwaite L, Multivariable feedback control. Analysis and Design, John Wiley and Sons, 1996.
  • [10] Tikiionov A. N., Regularization of incorrectly posed problems, Soviet Math, Vol. 4, 1963, 1624-1627.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0009-0002
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.