PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Feature space reduction and classification in automatic voice quality estimation

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an approach to solve a problem of feature space reduction applied to a voice quality estimation system. In order to reduce symptom space dimensionality, a method based on of decision tree and Fisher Linear Discriminant has been introduced. On the basis of 3 discrimination tests, the patient's voice is being classified into one of 3 groups - healthy, ill or risk, obtaining 90% of correct results. The experiment involved voice recordings of 70 patients who were diagnosed by the specialist. The method has been applied to a system of automatic voice quality estimation - the SpeechAnalyser, which was designed to be a supportive tool in laryngologica. l screening tests and treatment progress monitoring. There have been also briefly introduced the algorithms of feature extraction from a voice sample and also diagnostic significance of the symptoms has been discussed. Author proposed a new approach to cepstral analysis that allows objective measuring of harmonic and subharmonic content is spectrum.
Twórcy
autor
  • Institute of Computer Graphics and Multimedia Systems, The Szczecin University of Technology, Żołnierska 49, 71-210 Szczecin, Poland, asamborska@wi.ps.pl
Bibliografia
  • [1] Gerhard D., Pitch Extraction and Fundamental Frequency: History and Current Techniques, Technical Report TR-CS 2003-06, Department of Computer Science, University of Regina, Regina, 2003.
  • [2] Owens F.J., Signal processing of speech, The Maximillian Press LTD, Londyn, 1993.
  • [3] Samborska A., Przetwarzanie mowy na potrzeby diagnozowania medycznego, master thesis, The Szczecin University of Technology, Faculty of Computer Science and Information Systems, 2004.
  • [4] Samborska A., Voice Quality Estimation for Medical Diagnostics, Image Analysis, Computer Graphics, Security Systems and Artificial Intelligence Applications, ACS-CISIM 2006, Bialystok, 2005.
  • [5] Świdziński P., Przydatność analizy akustycznej w diagnostyce zaburzeń głosu, professor thesis, Poznań, 1998.
  • [6 ] Wallen E., Hanseu J., A Screening Test for Speech Pathology Assessment Using Objective Quality Measures, Department of Electrical Engineering, Duke University, Durham, 1996.
  • [7] Welling M., Fisher Linear Discriminant Analysis, Department of Computer Science University of Toronto, Toronto, 1992.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0008-0089
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.