Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Heuristic optimization techniques turned out to be very well suited for attacking various kinds of problems. However, when it comes to practical applications like scheduling problems, route planning, etc., also these algorithms still suffer from a very long running time mainly due to the rather large problem instances relevant in real world applications. Consequently, parallel optimization methods like parallel Genetic Algorithms are widely used to overcome this handicap. In this paper, the authors present a new environment for parallel heuristic optimization based upon the already proposed HeuristicLab. In contrast to other existing grid computing or parallel optimization projects, HeuristicLab Grid offers the possibility of rapid and easy use of existing optimization algorithms and problems in a parallel way without the need of complex installation and maintenance.
Czasopismo
Rocznik
Tom
Strony
103--110
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
- Institute of Systems Theory and Simulation, Johannes Kepler University, Altenbergerstrasse 69, A-4040 Linz, Austria
autor
- Institute of Systems Theory and Simulation, Johannes Kepler University, Altenbergerstrasse 69, A-4040 Linz, Austria
Bibliografia
- [1] Affenzeller M., Wagner S., SASEGASA: A New Generic Parallel Evolutionary Algorithm for Achieving Highest Quality Results, Journal of Heuristics - Special Issue on New Advances on Parallel Meta-Heuristics for Complex Problems, Kluwer Academic Publishers, Vol. 10, 2004, 239-263.
- [2] Anderson D. P. et al., SET[@home: An Experiment in Public-Resource Computing, Commun. ACM, Vol.45, No, 11,2002, 56-61,
- [3] Arenas M. G. et al., A Framework for Distributed Evolutionary Algorithms, Parallel Problem Solving from Nature (PPSN VII), Lecture Notes in Computer Science, Springer-Verlag, Vol. 2439, 2002, 665-675,
- [4] Braune R. et al., Applying Genetic Algorithms to the Optimization of Production Planning in a Real-World Manufacturing Environment, Cybernetics and Systems 2004, Austrian Society for Cybernetic Studies, 2004, 41-46,
- [5] Cahon S. et al., ParadisEO: A Framework for the Reusable Design of Parallel and Distributed Metaheuristics, Journal of Heuristics - Special Issue on New Advances on Parallel Meta-Heuristics for Complex Problems, Kluwer Academic Publishers, Vol. 10, 2004, 357-380,
- [6] Costa J. et al., JDEAL: The Java Distributed Evolutionary Algorithms Library, http://laseeb.isr. ist.utl.pr/sw/jdeal, 1999.
- [7] Di Gaspero L., Schärf A., Easylocal++: An Object-Oriented Framework for the Design of Local Search Algorithms and Metaheuristics, MIC'2001 4th Metaheuristics International Conference, 2001, 287-292.
- [8] Foster I., Kesselman C., Globus: A Metacomputing Infrastructure Toolkit, International Journal of Supercomputer Applications, Vol. 11, No. 2, 1997, 115-128.
- [9] Gagné C. et al., Distributed BEAGLE: An Environment for Parallel and Distributed Evolutionary Computations, Proceedings of the 17th Annual International Symposium on High Performance Computing Systems and Applications (HPCS), 2003.
- [10] Keijzer M. et al., Evolving Objects: General Purpose Evolutionary Computation Library, Proceedings of the 5th International Conference on Evolutionary Algorithms (EA 01), 2001.
- [11] Michel L., Van Hentenryck P., Localizer++: An Open Library for Local Search, Technical Report CS-01-02, Brown University, Computer Science, 2001.
- [12] Wagner S., Affenzeller M., Heuristic Lab - A Generic and Extensible Optimization Environment, To be published in: Proceedings of IBERAMIA 2004, 2004.
- [13] Winkler S. et al.. Identifying Nonlinear Structures Using Genetic Programming Techniques, Cybernetics and Systems 2004, Austrian Society for Cybernetic Studies, 2004, 689-694
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0008-0054