PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A note on output-nulling subspaces, zero-dynamics and zeros in MIMO LTI systems

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In MIMO LTI continuous-time systems S(A, B, C) the classical notion of the Smith zeros does not characterize fully the output-zeroing problem. In order to analyze the question we extend this notion by treating multivariable zeros (called further the invariant zeros) as the triples (complex number, nonzero state-zero direction, input-zero direction). Nothing is assumed about the relationship of the number of inputs to the number of outputs nor about the normal rank of the underlying system matrix. The treatment is strictly connected with the output zeroing problem and in that spirit the zeros can be easily interpreted even in the degenerate case (i.e., when any complex number is such zero). A simple sufficient and necessary condition of nondegeneracy is presented. The condition decomposes the class of all systems S(A, B, C) such that and into two disjoint subclasses: of nondegenerate and degenerate systems. In nondegenerate systems, the Smith zeros and the invariant zeros are exactly the same objects which are determined as the roots of the so-called zero polynomial. The degree of this polynomial equals the dimension of the maximal (A, B)-invariant subspace contained in KerC, while the zero dynamics are independent of control vector. In degenerate systems the zero polynomial determines merely the Smith zeros, while the set of the invariant zeros equals the whole complex plane. The dimension of the maximal (A, B)-invariant subspace contained in KerC is strictly larger than the degree of the zero polynomial, whereas the zero dynamics essentially depend upon control vector.
Czasopismo
Rocznik
Strony
71--79
Opis fizyczny
Bibliogr. 11 poz.
Twórcy
Bibliografia
  • [1] Basile G., Marro G., Controlled and Conditioned Invariants in Linear System Theory, Prentice-Hall, Englewood Cliffs, NJ 1992.
  • [2] Gantmacher F. R.,Theory of Matrices, Nauka, Moscow 1988, (in Russian).
  • [3] Isidori A., Nonlinear Conrol Systems /Springer-Verlag, London 1995.
  • [4] Kalman R. E., On the computation of the reachable/observable canonical form, SIAM J. Contr. & Optimiz., Vol. 20, 1982, 258-260.
  • [5] MacFarlane a. G. J., Karcanias N., Poles and zeros of linear multivariable systems: A survey of the algebraic, geometric and complex variable theory. Int. J. Contr., Vol. 24, 1976, 33-74.
  • [6] Marro G., Ntogramatzidis L., Prattichizzo D., Zattoni E., Linear control theory in geometric terms, CIRA Summer School „Antonio Ruberti", Bertinoro, 2002
  • [7] Rosenbrock H. H., The zeros of a system. Int. J. Contr., Vol. 18, 1973, 297-299.
  • [8] Schräder C. B., Sain M. K., Research on system zeros: A survey. Int. J. Contr., Vol. 50, 1989, 1407-1433.
  • [9] Tokarzewski J., A note on dynamical interpretation of invariant zeros in MIMO LTI systems and algebraic criterions of degeneracy. Int. Symp. MTNS, Perpignan 2000, (compact disc).
  • [10] Tokarzewski J., Zeros in Linear Systems: a Geometric Approach, Publishing House of the Warsaw University of Technology, Warsaw 2002
  • [11] Tokarzewski J., Relationship between Smith zeros and invariant zeros in linear singular systems, Proc. of the 8th IEEE Int. Conf. on Methods and Models in Automation and Robotics, Szczecin, 2002, 71-74.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0008-0051
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.