PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The pluripolar hull and the fine topology

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We show that the projections of the pluripolar hull of the graph of an analytic function in a subdomain of the complex plane are open in the fine topology.
Słowa kluczowe
Rocznik
Strony
285--290
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
Bibliografia
  • [Anc] A. Ancona, Démonstration d’une conjecture sur la capacité et l’effilement, C. R. Acad. Sci. Paris 297 (1983), 393-395.
  • [Bre] M. Brelot, Eléments de la théorie classique du potentiel, Les cours de Sorbonne, Paris, 1958.
  • [Edi] A. Edigarian, Pluripolar hulls and holomorphic coverings, Israel J. Math. 130 (2002), 77-92.
  • [EdWi 1] A. Edigarian and J. Wiegerinck, The pluripolar hull of the graph of a holomorphic function with polar singularities, Indiana Univ. Math. J. 52 (2003), 1663-1680.
  • [EdWi 2] —, —, Graphs that are not complete pluripolar, Proc. Amer. Math. Soc. 131 (2003), 2459-2465.
  • [EdWi 3] —, —, Determination of the pluripolar hull of graphs of certain holomorphic functions, Ann. Inst. Fourier (Grenoble) 54 (2004), 2085-2104.
  • [Edl] T. Edlund, Complete pluripolar curves and graphs, preprint, Dept. Math., Uppsala Univ., 2004.
  • [E-J1] T. Edlund and B. Jöricke, The pluripolar hull of a graph and fine analytic continuation, arXiv:math.CV/0405025 (2004).
  • [E-J2] T. Edlund and В. Jöricke, The pluripolar hull of a graph and fine analytic continuation, Ark. Mat., to appear.
  • [Jos] B. Josefson, On the equivalence between locally polar and globally polar sets for plurisubharmonic functions on Cn, ibid. 16 (1978), 109-115.
  • [LePo] N. Levenberg and E. A. Poletsky, Pluripolar hulls, Michigan Math. J. 46 (1999), 151-162.
  • [LeMaPo] N. Levenberg, G. Martin and E. A. Poletsky, Analytic disks and pluripolar sets, Indiana Univ. Math. J. 41 (1992), 515-532.
  • [Ran] Th. Ransford, Potential Theory in the Complex Plane, Cambridge Univ. Press, 1994.
  • [Sad] A. Sadullaev, Plurisubharmonic measures and capacities on complex manifolds, Uspekhi Mat. Nauk 36 (1981), no. 4, 53-105 (in Russian).
  • [Sic] J. Siciak, Pluripolar sets and pseudocontinuation, in: Complex Analysis and Dynamical Systems II (Nahariya, 2003), Amer. Math. Soc., Contemp. Math., to appear.
  • [Wie 1] J. Wiegerinck, The pluripolar hull of {w = e-1/z}, Ark. Mat. 38 (2000), 201-208.
  • [Wie 2] —, Graphs of holomorphic functions with isolated singularities are complete pluripolar, Michigan Math. J. 47 (2000), 191-197.
  • [Zer] A. Zeriahi, Ensembles pluripolaires exceptionnels pour la croissance partielle des fonctions holomorphes, Ann. Polon. Math. 50 (1989), 81-91.
  • [Zwo] W. Zwonek, A note on pluripolar hulls of graphs of Blaschke products, Potential Anal. 22 (2005), 195-206.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0008-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.