Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents an error estimate for Runge-Kutta direct discretizations of terminal optimal control problems for linear systems. The optimal control for such problems is typically discontinuous, and Lipschitz stability of the solution with respect to perturbations does not necessarily hold. The estimate (in terms of the optimal controls) is of first order if certain recently obtained sufficient conditions for structural stability hold, and of fractional order, otherwise. The main tool in the proof is the established relation between the local convexity index of the reachable set and the multiplicity of zeros of appropriate switching functions associated with the problem.
Czasopismo
Rocznik
Tom
Strony
967--982
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
- Institute of Mathematical Methods in Economics, Vienna University of Technology, Argentinierstrasse 8/119, A-1040 Vienna, Austria, vveliov@server.eos.tuwien.ac.at
Bibliografia
- Agrachev, A.A., Stefani, G. and Zezza, P. (2002) Strong optimality for a bang-bang trajectory. SIAM J. Control Optim. 41 (4), 991–1014.
- Butcher, J.C. (1987) The numerical analysis of ordinary differential equations. John Wiley and Sons.
- Dontchev, A.L. and Hager, W.W. (1993) Lipschitzian stability in nonlinear control and optimization. SIAM J. Control Optim. 31 (3), 569–603.
- Dontchev, A.L. and Hager, W.W. (2001) The Euler approximation in state constrained optimal control. Math. Comp. 70 (233), 173–203.
- Dontchev, A.L., Hager, W.W. and Veliov, V.M. (2000) Second-order Runge-Kutta approximations in control constrained optimal control, SIAM J. Numerical Anal. 38 (1), 202–226.
- Felgenhauer, U. (2003) On stability of bang-bang type controls. SIAM J. Control Optim. 41 (6), 1843–1867.
- Felgenhauer, U. (2005) On the optimality of optimal bang-bang controls for linear and semilinear systems. Control & Cybernetics. To appear.
- Frankowska, H. and Olech, Cz. (1980) R-convexity of the integral of setvalued functions. Contributions to analysis and geometry, Baltimore,Md., 1980, 117–129; Johns Hopkins Univ. Press, Baltimore, Md., 1981.
- Łojasiewicz, St. Jr. (1979) Some properties of accessible sets in nonlinear control systems. Ann. Polon. Math., 36(2):123–137, .
- Malanowski, K., Buskens, Ch. and Maurer, H. (1998) Convergence of approximations to nonlinear optimal control problems. In: A.V. Fiacco, ed., Mathematical programming with data perturbations, Lecture Notes in Pure and Appl. Math. 195, Dekker, New York, 253–284.
- Maurer, H. and Osmolovskii, N. (2004) Second order sufficient conditions for time-optimal bang-bang control. SIAM J. Control Optim. 42 (6), 2239–2263.
- Noble, J. and Schattler, H. (2002) Sufficient conditions for relative minima of broken extremals in optimal control theory. J. Math. Anal. Appl. 269 (1), 98–128.
- Osmolovskii, N.P. (1998) Second-order conditions for broken extremal. In: Calculus of variations and optimal control, Haifa, 1998, 198–216; Chapman & Hall/CRC Res. NotesMath. 411, Boca Raton, FL, 2000.
- Pliś, A. (1975) Accessible sets in control theory. International Conference on Differential Equations, Academic Press, 646–650.
- Polovinkin, E. (1996) Strongly convex analysis. Mat. Sb. 187 (2), 103–130; translation in Sb. Math. 187 (2), 259–286.
- Polyak, B.T. (1983) Introduction to optimization (in Russian). Nauka, Moscow.
- Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V. and Mishchenko, E.F. (1962) The mathematical theory of optimal processes. John Wiley & Sons.
- Veliov, V.M. (1987a) On the convexity of integrals of multivalued mappings: applications in control theory. J. Optim. Theory Appl. 54 (3), 541–563.
- Veliov, V.M. (1987b) On the bang-bang principle for linear control systems. Comptes Rendus de l’Academie Bulgare des Sciences 4 (2), 31–33.
- Veliov, V.M. (1997) On the time-discretization of control systems. SIAM J. Control Optim. 35 (5), 1470–1486.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0008-0022