PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Self-adjoint extensions of differential operators and exterior topological derivatives in shape optimization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Self-adjoint extensions are constructed for a family of boundary value problems in domains with a thin ligament and an asymptotic analysis of a Lq-continuous functional is performed. The results can be used in numerical methods of shape and topology optimization of integral functionals for elliptic equations. At some stage of optimization process the singular perturbation of geometrical domain by an addition of thin ligament can be replaced by its approximation denned for the appropriate self-adjoint extension of the elliptic operator. In this way the topology variation of current geometrical domain can be determined and used e.g., in the level-set type methods of shape optimization.
Rocznik
Strony
903--925
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
  • Institute of Mechanical Engineering Problems V.O. Bolshoy pr. 61, 199178 St. Petersburg, Russia
  • Institute Elie Cartan, University of Nancy 1 BP 239, 54-506 Vandoeuvre Les Nancy, France
Bibliografia
  • Albeverio, S. and Kurasov, P. (2000) Singular perturbations of differential operators. Solvable Schrodinger type operators. London Mathematical Society Lecture Note Series 271. Cambridge University Press, Cambridge.
  • Allaire, G., Jouve, F. and Toader, A.-M. (2004) Structural optimization using sensitivity analysis and a level-set method. Journal of Computational Physics 194 (1), 363-393.
  • Bendsoe, M.P. and Sigmund, O. (2003) Topology optimization. Theory, methods and applications. Springer, New York.
  • Berezin, F.A. and Faddeev, L.D. (1961) Remark on the Schrodinger equation with singular potential. Dokl. Akad. Nauk SSSR 137 1011-1014. (Engl. transl. in Soviet Math. Dokl. 2, 372-375.)
  • Burger, M., Hackl, B. and Ring, W. (2004) Incorporating topological derivatives into level set methods. Journal of Computational Physics 194 (1), 344-362.
  • Dzhavadov, M.G. (1968) Asymptotics of the solution of a boundary value problem for second order elliptic equation in thin domains. Differential equations 4, 1901-1909.
  • Eschenauer, H.A., Kobelev, V.V. and Schumacher, A. (1994) Bubble method for topology and shape optimization of structures. Struct. Optimiz. 8, 42-51.
  • Garreau, S., Guillaume, Ph. and Masmoudi, M. (2001) The topological asymptotic for PDE systems: the elasticity case. SIAM Journal on Control and Optimization 39(6) 1756-1778.
  • Gorbachuk, V.I. and Gorbachuk, M.L. (1984) Boundary value problems for operator-differential equations (in Russian). Naukova Dumka, Kiev.
  • Kamotski, I.V. and Nazarov, S.A. (1998) Spectral problems in singular perturbed domains and selfadjoint extensions of differential operators. Trudy St.-Petersburg Mat. Obshch. 6, 151-212. (Engl. transl. in Proceedings of the St. Petersburg Mathematical Society 6 (2000) 127-181, Amer. Math. Soc. Transl. Ser. 2, 199, Amer. Math. Soc., Providence, RI)
  • Karpeshina, Yu.E. and Pavlov, B.S. (1986) Interaction of the zero radius for the biharmonic and the polyharmonic equation (in Russian). Mat. Zametki 40, 49-59.
  • Kondratev, V.A. (1967) Boundary problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Obshch. 16, 209-292. (Engl. transl. in Trans. Moscow Math. Soc. 16 (1967), 227-313.)
  • Lewiński, T. and Sokołowski, J. (2003) Energy change due to appearing of cavities in elastic solids. Int. J. Solids & Structures 40, 1765-1803.
  • Mazja, W.G., Nazarov, S.A. and Plamenevskii, B.A. (1991) Asymptotische Theorie elliptischer Randwertaufgaben in singular gestorten Gebieten. 2. Akademie-Verlag, Berlin. (English transl.: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains. Vol. 2, Birkhauser Verlag, Basel, 2000.)
  • Mazya, V.G. and Plamenevskii, B.A. (1978) Estimates in Lp and in Holder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary. Math. Nachr. 81 25-82. (English transl. in Amer. Math. Soc. Transl. (Ser.2) 123 (1984), 1-56.)
  • Nazarov, S.A. (1988) Selfadjoint extensions of the Dirichlet problem operator in weighted function spaces. Mat. Sbornik 137 (2), 224-241. (English transl. in Math. USSR Sbornik 65 (1), 1990, 229-247.)
  • Nazarov, S.A. (1996) Asymptotic conditions at points, selfadjoint extensions of operators and the method of matched asymptotic expansions. Trudy St.-Petersburg Mat. Obshch. 5, 112-183 (in Russian). (English transl. in Trans. Am. Math. Soc. Ser. 2. 193, 1999, 77-126.)
  • Nazarov, S.A. (1999) Weighted spaces with detached asymptotics in application to the Navier-Stokes equations. In: Advances in Mathematical Fluid Mechanics (Paseky, Czech. Republic, 1999). Springer-Verlag, Berlin, 2000, 159-191.
  • Nazarov, S.A. (2002) Asymptotic theory of thin plates and rods. Dimension reduction and integral estimates. Nauchnaja kniga, Novosibirsk (in Russian).
  • Nazarov, S.A. (2004) Elliptic boundary value problems in hybrid domains. Functional Analysis and Applications 38, 55-72.
  • Nazarov, S.A. and Plamenevskii, B.A. (1992) A generalized Green’s formula for elliptic problems in domains with edges. Probl. Mat. Anal. N 13. St.-Petersburg Univ., St.-Petersburg, 106-147. (English transl. in J. Math. Sci., 1995, 73 (6), 674-700.)
  • Nazarov, S.A. and Plamenevsky, B.A. (1994) Elliptic Problems in Domains with Piecewise Smooth Boundaries. De Gruyter Exposition in Mathematics 13, Walter de Gruyter.
  • Nazarov, S.A. and Sokołowski, J. (2003) Asymptotic analysis of shape functionals. Journal de Mathematiques pures et appliquees 82, 125-196.
  • Nazarov, S.A. and Sokołowski, J. (2004) The topological derivative of the Dirichlet integral due to formation of a thin ligament. Siberian Math. J. March 45 (2), 341-355.
  • Nazarov, S.A. and Sokołowski, J. (2005) Self adjoint extensions for the Neumann Laplacian in application to shape optimization. Submitted.
  • Novotny, A.A., Feijoo, R.A., Taroco, E. and Padra, C. (2003) Topological sensitivity analysis. Computer Methods in Applied Mechanics and Engineering 192, 803-829.
  • Pavlov, B.S. (1987) The theory of extension and explicitly soluble models. Uspehi Mat. Nauk 42 (6) 99-131. (English transl. in Russian Math. Surveys 42 (6), 127-168.)
  • Rofe-Beketov, F.S. (1969) Selfadjoint extensions of differential operators in a space of vector-valued functions (in Russian). Dokl. Akad. Nauk SSSR 184, 1034–1037.
  • Sokołowski, J. and Żochowski, A. (1999) On topological derivative in shape optimization. SIAM Journal on Control and Optimization 37 (4), 1251-1272.
  • Sokołowski, J. and Żochowski, A. (2001) Topological derivatives of shape functionals for elasticity systems. Mechanics of Structures and Machines 29, 333-351.
  • Sokołowski, J. and Żochowski, A. (2003a) Optimality conditions for simultaneous topology and shape optimization. SIAM Journal on Control and Optimization, 42, 1198-1221.
  • Sokołowski, J. and Żochowski, A. (2003b) Topological optimization for contact problems. Prepublication IECN 2003/25: http://www.iecn.u-nancy.fr/Preprint/publis/preprints-2003.html
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0008-0019
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.