PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Inversion of multifunctions and differential inclusions

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present a new inverse mapping theorem for correspondences. It uses a notion of differentiability for multifunctions which seems to be new. We compare it with previous versions. We provide an application to differential inclusions.
Rocznik
Strony
871--901
Opis fizyczny
Bibliogr. 79 poz.
Twórcy
autor
  • Departement de mathematiques, Faculte des sciences, Universite d’Es-Senia, BP 1524 Oran, Algerie
autor
  • Laboratoire de mathematiques appliquees, CNRS UMR 5142, Faculte des sciences BP 1155 64013 PAU Cedex, France
Bibliografia
  • Agadi, A. and Penot, J.-P. (2005) A comparative study of various notions of approximation of sets. J. Approx. Th. 134, 80-101.
  • Arino, O., Gautier, S. and Penot, J.-P. (1984) A fixed point theorem for sequentially continuous mappings with application to ordinary differential equations. Funkc. Ekvacioj, Ser. Int. 27, 273-279.
  • Aubin, J.-P. (1981) Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions. Adv. Math., Suppl. Stud. 7A, 159-229.
  • Aubin, J.-P. and Frankowska, H. (1987) On inverse function theorems for set-valued maps. J. Maths. Pures Appl. 66, 71-89.
  • Auslender A. and Cominetti, R. (1991) A comparative study of multifunction differentiability with applications in mathematical programming. Math. Oper. Res. 16 (2), 240-258.
  • Aze, D. (1988) An inversion theorem for set-valued maps. Bull. Aust. Math. Soc. 37, 411-414.
  • Aze, D. and Chou, C.C. (1995) On a Newton type iterative method for solving inclusions. Math. Oper. Res. 20 (4), 790-800.
  • Aze, D. and Corvellec, J.-N. (2004) Characterizations of error bounds for lower semicontinuous functions on metric spaces. ESAIM Control Optim. Calc. Var. 10, to appear.
  • Aze, D., Corvellec, J.-N. and Lucchetti, R.E. (2002) Variational pairs and applications to stability in nonsmooth analysis. Nonlinear Anal., Theory Methods Appl. 49A (5), 643-670.
  • Aze, D. and Penot J.-P. (2005) On the dependence of fixed point sets of pseudo-contractive multifunctions. Applications to differential inclusions. To appear in Nonlinear Dynamics and Systems Theory.
  • Banks, H.T. and Jacobs, Q.M. (1970) A differential calculus for multifunctions. J. Math. Anal. Appl. 29, 246-272.
  • Borwein, J. (1986) Stability and regular points of inequality systems. J. Optim. Th. Appl. 48, 9-52.
  • Borwein, J.M. and Dontchev, A.L. (2003) On the Bartle-Graves theorem. Proc. Am. Math. Soc. 131, (8), 2553-2560.
  • Brown, A.A. and Bartholomew-Biggs, M.C. (1989a) Some effective methods for unconstrained optimization based on the solution of systems of ordinary differential equations. J. Optim. Theory Appl. 62 (2), 211-224.
  • Brown, A.A. and Bartholomew-Biggs, M.C. (1989b) ODE versus SQP methods for constrained optimization. J. Optim. Theory Appl. 62 (3), 371-386.
  • Choquet, G. (1960) Cours d’analyse, mimeographied notes. Centre de Documentation Universitaire, Paris.
  • Deimling, K. (1992) Multivalued Differential Equations. De Gruyter, Berlin, New York.
  • Dien, P. H. and Yen, N.D. (1991) On implicit function theorems for set valued maps and their application to mathematical programming under inclusion constraints. Applied Math. Optim. 24, 35-54.
  • Dontchev, A.L. (1995) Implicit function theorems for generalized equations. Math. Program. 70A (1), 91-106.
  • Dontchev, A.L. (1996) The Graves theorem revisited. J. Convex Anal. 3 (1), 45-53.
  • Dontchev, A.L. and Hager, W.W. (1993) Lipschitzian stability in nonlinear control and optimization. SIAM J. Control Opt. 31 (3), 569-603.
  • Dontchev, A.L. and Hager, W.W. (1994a) Implicit functions, Lipschitz maps, and stability in optimization. Math. Oper. Res. 19 (3), 753-768.
  • Dontchev, A.L. and Hager, W.W. (1994b) An inverse mapping theorem for set-valued maps. Proc. Amer. Math. Soc. 121, 481-489.
  • Dontchev, A.L. and Hager, W.W. (1996) Implicit functions defined by generalized equations. In: V. Lakshmikantham, ed., World Congress of Nonlinear Analysis ’92. Proceedings of the first world congress, Tampa, FL, USA, August 19-26, 1992. de Gruyter, Berlin, 2289-2298.
  • Dontchev, A.L. and Hager, W.W. (1998) Lipschitzian stability for state constrained nonlinear optimal control. SIAM J. Control Opt. 36 (2), 698-718.
  • Dontchev, A.L. and Rockafellar, R.T. (1997) Characterizations of Lipschitzian stability in nonlinear programming. In: A. Fiacco, ed., Mathematical programming with data perturbations. 17th symposium, George Washington University, Washington, DC, USA, May 1995. New York, NY: Marcel Dekker. Lect. Notes Pure Appl. Math. 195, 65-82.
  • Fabian, M. (1979) Concerning an interior mapping theorem. Comm. Math. Univ. Carol. 20, 345-356.
  • Filippov, A.F. (1967) Classical solutions of differential equations with multivalued right-hand side. SIAM J. Control 5, 609-621.
  • Frankowska, H. (1987) An open mapping theorem for set-valued maps. J. Math. Anal. Appl. 127, 172-180.
  • Frankowska, H. and Olech, C. (1982) Boundary solutions of differential inclusion. J. Differ. Equations 44, 156-165.
  • Gautier, S. (1989) Contributions l’analyse non-lineaire: inclusions differentielles, differentiabilite des multiapplications. These d’Etat, Univ. of Pau.
  • Gautier, S. (1990) Affine and eclipsing multifunctions. Numer. Funct. Anal. Optimization 11 (7/8), 679-699.
  • Gautier, S., Isac, G. and Penot, J.-P. (1983) Surjectivity of multifunctions under generalized differentiability assumptions. Bull. Aust. Math. Soc. 28, 13-21.
  • Grande, Z. (1994) On the inverse multifunction. Real Anal. Exch. 19 (2), 598-603.
  • Hermes, H. (1970) The generalized differential equation x˙ ∈ R(t, x). Adv. Math. 4, 149-169.
  • Halkin, H. (1974) Implicit functions and optimization problems without continuous differentiability of the data. SIAM J. Control 12, 229-236.
  • Halkin, H. (1976) Interior mapping theorem with set-valued derivatives. J. Anal. Math. 30, 200-207.
  • Himmelberg, C.J. and Van Vleck, F.S. (1973) Lipschitzian generalized differential equations. Rend. Sem. Mat. Univ. Padova 48, 159-169.
  • Hukuhara, M. (1967) Integration of measurable maps with compact, convex set values. Funkcial. Ekvac. 10, 205-223.
  • Ioffe, A.D. and Tihomirov, V.M. (1979) Theory of Extremal Problems. Studies in Mathematics and its applications 6, North Holland, Amsterdam.
  • Jourani, A. and Thibault, L. (1995) Metric regularity and subdifferential calculus in Banach spaces. Set-Valued Anal. 3 (1), 87-100.
  • Khanh, P.H. (1986) An induction theorem and general open mapping theorems. J. Math. Anal. Appl. 118, 519-534.
  • Klatte, D. and Kummer, B. (2001) Contingent derivatives of implicit (multi-) functions and stationary points. Ann. Oper. Res. 101, 313-331.
  • Klatte, D. and Kummer, B. (2002) Nonsmooth Equations in Optimization. Regularity, Calculus, Methods and Applications. Nonconvex Optimization and Its Applications 60. Kluwer, Dordrecht.
  • Kummer, B. (1991a) Lipschitzian inverse functions, directional derivatives and applications in C1,1 optimization. J. Optim. Th. Appl. 70 (3), 561-581.
  • Kummer, B. (1991b) An implicit function theorem for C0,1-equations and parametric C1,1-optimization. J. Math. Anal. Appl. 158, 35-46.
  • Ledyaev, Y.S. and Zhu, Q.J. (1999) Implicit multifunction theorems. Set-Valued Anal. 7, 209-238.
  • Lemarechal, C. and Zowe, J. (1991) The eclipsing concept to approximate a multi-valued mapping. Optimization 22 (1), 3-37.
  • Levy, B. (2001a) Solution sensitivity from general principles. SIAM J. Control Optimization 40 (1), 1-38.
  • Levy, B. (2001b) Lipschitzian multifunctions and a Lipschitzian inverse mapping theorem. Math. Oper. Res. 26 (1), 105-118.
  • Lim, T.-C. (1985) On fixed point stability for set-valued contractive mappings with applications to generalized differential equations. J. Math. Anal. Appl. 110, 436-441.
  • Martelli, M. and Vignoli, A. (1974) On differentiability of multi-valued maps. Boll. Unione Mat. Ital. IV, 10, 701-712.
  • Maurer, H. and Zowe, J. (1979) First and second-order necessary and sufficient conditions in mathematical programming and optimal control. Math. Program. 16, 98-110.
  • Mignot, F. (1976) Controle dans les inequations variationnelles elliptiques. J. Funct. Anal. 22, 130-185.
  • Nadler, S.B. (1969) Multivalued contraction mappings. Pacific J. Maths. 30, 475-488.
  • Olech, C. (1975) Existence of solutions of non-convex orientor fields. Boll. Unione Mat. Ital. IV, 11, Suppl. Fasc. 3, 189-197.
  • Olech, C. (1983) Boundary solutions of differential inclusion. In: Mathematical Theories of Optimization, Proc. Conf., Genova 1981, Lect. Notes Math. 979, 236-239.
  • Papageorgiou, N.S. (1988) Convergence theorems for fixed points of multifunctions and solutions of differential inclusions in Banach spaces. Glas. Mat. 23, 247-257.
  • Penot, J.-P. (1970) Sur le theoreme de Frobenius. Bull. Soc. Math. France 98, 47-80.
  • Penot, J.-P. (1982) On regularity conditions in mathematical programming. Math. Prog. Study 19, 167-199.
  • Penot, J.-P. (1984) Differentiability of relations and differential stability of perturbed optimization problems. SIAM J. Control and Optim. 22 (4), 529-551. Erratum, idem, 260 (4) (1986).
  • Penot, J.-P. (1985) Open mapping theorems and linearization stability. Numerical Funct. Analysis and Optimization 8 (1-2), 21-36.
  • Penot, J.-P. (1989) Metric regularity, openness and Lipschitzian behavior of multifunctions. Nonlinear Anal., Theory Methods Appl. 13 (6), 629-643.
  • Penot, J.-P. (1995) Inverse function theorems for mappings and multimappings. South East Asia Bull. Math. 19 (2), 1-16.
  • Polovinkin, E.S. and Smirnov, G.V. (1986) An approach to the differentiation of many-valued mappings, and necessary conditions for optimization of solutions of differential inclusions. Diff. Uravneniya 22 (6), 944-954.
  • Ptak, V. (1982) A nonlinear subtraction theorem. Proc. Royal Irish Acad. Sect. A 62, 47-53.
  • Robbin, J.W. (1968) On the existence theorem for differential equations. Proc. Am. Math. Soc. 19, 1005-1006.
  • Robinson, S.M. (1976) Stability theory for systems of inequalities, part II: pseudo-differentiable nonlinear systems. SIAM J. Numer. Anal. 13, 497-513.
  • Robinson, S.M. (1991) An implicit-function theorem for a class of nonsmooth functions. Math. Oper. Res. 16 (2), 292-309.
  • Rockafellar, R.T. and Wets, R.JB. (2000) Variational Analysis. Springer, New York.
  • Sach, P.H. (1998) Differentiability of set-valued maps in Banach spaces. Math. Nachr. 139 (188), 215-235.
  • Sengupta, A. (1997) Multifunction and generalized inverse. J. Inverse Ill-Posed Probl. 5 (3), 265-285.
  • Serovaiskij, S.Ya. (1995) Inverse function theorem and extended differentiability in Banach spaces. Russ. Math. 39 (8), 37-46 (1995); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 1995 (8), 39-49 (1995).
  • Silin, D.B. (1997) On set-valued differentiation and integration. Set-Valued Anal. 5 (2), 107-146.
  • Szilagyi, T. (1989) Existence and Lipschitzian dependence theorems in complete spaces. Ann. Univ. Sci. Budap. Rolando Eotvos, Sect. Math. 32, 191-202.
  • Tolstonogov, A. (2000) Differential Inclusions in a Banach Space. Kluwer, Dordrecht.
  • Yen, N.D. (1987) Implicit function theorems for set-valued maps. Acta Math. Vietnamica 12 (2), 17-28.
  • Zhang, R. and Treiman, J. (1995) Upper-Lipschitz multifunctions and inverse subdifferentials. Nonlinear Anal., Theory Methods Appl. 24 (2), 273-286.
  • Zhu, Q.J. (1991) On the solution set of differential inclusions in Banach spaces. J. Differ. Equations 93, 213-237.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0008-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.