Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper studies a Mayer type optimal control problem with general endpoint constraints for semilinear unbounded evolution inclusions in reflexive and separable Banach spaces. First, we construct a sequence of discrete approximations to the original optimal control problem for evolution inclusions and prove that optimal solutions to discrete approximation problems uniformly converge to a given optimal solution for the original continuous-time problem. Then, based on advanced tools of generalized differentiation, we derive necessary optimality conditions for discrete-time problems under fairly general assumptions. Combining these results with recent achievements of variational analysis in infinite-dimensional spaces, we establish new necessary optimality conditions for constrained continuous-time evolution inclusions by passing to the limit from discrete approximations.
Czasopismo
Rocznik
Tom
Strony
849--870
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
autor
- Department of Mathematics, Wayne State University Detroit, MI 48202, USA
autor
- Department of Mathematics, Wayne State University Detroit, MI 48202, USA
Bibliografia
- Ahmed, N.U. (1991) Semigroup Theory with Applications to Systems and Control. Longman, Harlow, UK.
- Bounkhel, M. and Thibault, L. (2005) Further characterizations of regular sets in Hilbert spaces and their applications to nonconvex sweeping processes. To appear in SIAM J. Optim.
- Clarke, F.H. (2005) Necessary conditions in dynamic optimization. Mem. Amer. Math. Soc. 173 (816).
- Diestel, J. and Uhl, J.J. (1977) Vector Measures. American Mathematical Society, Providence, Rhode Island.
- Dontchev, A.L. and Farkhi, E.M. (1989) Error estimates for discretized differential inclusions. Computing 41, 349–358.
- Fattorini, H.O. (1999) Infinite-Dimensional Optimization and Control Theory. Cambridge University Press, Cambridge, UK.
- Frankowska, H. (1990) A priori estimates for operational differential inclusions. J. Diff. Eq. 84, 100–128.
- Ioffe, A.D. (1979) Necessary and sufficient conditions for a local minimum, I: A reduction theorem and first order conditions. SIAM J. Control Optim. 17, 245–250.
- Ioffe, A.D. (1997) Euler-Lagrange and Hamiltonian formalisms in dynamic optimization. Trans. Amer. Math. Soc. 349, 2871–2900.
- Li, X.J. and Yong, J. (1995) Optimal Control Theory for Infinite-Dimensional Systems. Birkhauser, Boston.
- Loewen, P.D. and Rockafellar, R.T. (1996) New necessary conditions for the generalized problem of Bolza. SIAM J. Control Optim. 34, 1496–1511.
- Mordukhovich, B.S. (1995) Discrete approximations and refined Euler-Lagrange conditions for nonconvex differential inclusions. SIAM J. Control Optim. 33, 882–915.
- Mordukhovich, B.S. (2004) Optimal control of evolution inclusions. To appear in Nonlinear Anal.
- Mordukhovich, B.S. (2005) Variational Analysis and Generalized Differentiation, Vol. I: Basic Theory, Vol. II: Applications. To appear in Springer, Berlin.
- Mordukhovich, B.S. and Shao, Y. (1995) Differential characterizations of covering, metric regularity, and Lipschitzian properties of multifunctions between Banach spaces. Nonlinear Anal. 25, 1401–1424.
- Mordukhovich, B.S. and Wang, D. (2005) Optimal control of semilinear unbounded differential inclusions. To appear in Proc. Fourth World Congress Nonlinear Anal.
- Rockafellar, R.T. and Wets, R. J-B. (1998) Variational Analysis. Springer, Berlin.
- Smirnov, G.V. (2002) Introduction to the Theory of Differential Inclusions. American Mathematical Society, Providence, Rhode Island.
- Tolstonogov, A.A. (2000) Differential Inclusions in a Banach Space. Kluwer, Dordrecht, The Netherlands.
- Vinter, R.B. (2000) Optimal Control. Birkhauser, Boston.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0008-0017