Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We derive a differential inclusion governing the evolution of optimal trajectories to the Mayor problem. The value function is allowed to be discontinuous. This inclusion has convex compact right-hand sides.
Czasopismo
Rocznik
Tom
Strony
787--803
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
- Ecole Polytechnique 1, rue Descartes, 75005 Paris, franko@shs.polytechnique.fr
Bibliografia
- Aubin, J.-P. (1991) Viability Theory. Birkhauser, Boston, Basel, Berlin.
- Aubin, J.-P. and Cellina, A. (1984) Differential Inclusions. Springer-Verlag, Grundlehren der Math. Wiss. 264.
- Aubin, J.-P. and Frankowska, H. (1990) Set-Valued Analysis. Birkhauser, Boston.
- Bardi, M. and Capuzzo Dolcetta, I. (1997) Optimal Control and Viscosity Solutions of Hamilton–Jacobi Equations. Birkhauser, Boston.
- Berkovitz, L.D. (1989) Optimal feedback controls. SIAM J. Control Optimiz. 27, 991-1006.
- Cannarsa, P. and Frankowska, H. (1991) Some characterizations of optimal trajectories in control theory. SIAM J. on Control and Optimization 29, 1322-1347.
- Cannarsa, P., Frankowska, H. and Sinestrari, C. (2000) Optimality conditions and synthesis for the minimum time problem. J. Set-Valued Analysis 8, 127-148.
- Cannarsa, P. and Sinestrari, C. (2004) Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control. Birkhauser, Boston.
- Fleming, W.H. and Rishel, R.W. (1975) Deterministic and Stochastic Optimal Control. Springer-Verlag, New York.
- Frankowska, H. (1989a) Contingent cones to reachable sets of control systems. SIAM J. on Control and Optimization 27, 170-198.
- Frankowska, H. (1989b) Optimal trajectories associated to a solution of contingent Hamilton-Jacobi equations. Applied Mathematics and Optimization 19, 291-311.
- Ioffe, A.D. (1977) On lower semicontinuity of integral functionals. SIAM J. Control Optim. 15, 521-521 and 991-1000.
- Olech, C. (1976)Weak lower semicontinuity of integral functionals. J. Optim. Theory Appl. 19, 3-16.
- Subbotina, N.N. (1989) The maximum principle and the superdifferential of the value function. Problems of Control and Information Theory 18, 151-160.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0008-0014