Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this survey, we recall the formulation of the problems and give a review of some nontrivial results in the area. Let F = (F1,...,Fn] : R^n - --> R^n be a C^1 map and let F'(x) and Jac F(x) = det F'(x) denote the Jacobian matrix and the jacobian of F at a point x belongs to R^n, respectively. The Global Asymptotic Stability Problem (GASP) reads as follows: Assume that F(0] = 0 and at any point x belongs to R^n all eigenvalues of F'(x) have negative real parts. Then consider the associated system of differential equations x'j(t] = Fj(x1(t), ...,Xn(t)), j = 1,...,n. The question is whether the solution x[t] = 0 is globally asymptotically stable. If n > 2, then the answer is negative (even if F is a a polynomial automorphism), so from now on (GASP) denotes (GASP) restricted to R^2. In 1963, Olech showed that under the (GASP) assumption (i. e., Jac F[x) > 0 and Trace F'(x) = [...] < 0 for any x belong to R^2) the conclusion of (GASP) is equivalent to the injectivity of F. In 1994, Fessler, and independently Gutierrez, proved the injectivity of F and, due to the above mentioned Olech's equivalence, gave the affirmative answer to the two-dimensional (GASP). Let K denote R or C, n > 1. The Jacobian Conjecture can be formulated as follows: If F = (F1, ... ,Fn) : K^n --> K^n is a polynomial map with a constant nonzero jacobian, then F is a polynomial automorphism (i.e. there exists F^-1 and F^-1 is also a polynomial map). Although the Jacobian Conjecture is still unsolved even in the case of n = 2, it is convenient, to consider the so called Generalized Jacobian Conjecture (for short (GJC)): the Jacobian Conjecture holds for every n > 1. We give a review of some interesting conditions equivalent to the Jacobian Conjecture, including Meisters and Olech's result on the existence of a poly-flow solution of the associated Ważewski equation x'(t) = [F'(x(t))]^-1 (a). We also present, a reduction of (GJC) to the case of F of degree 3 and of special forms, then some partial results, and (JC)'s relations with other problems.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
747--762
Opis fizyczny
Bibliogr 37 poz.
Twórcy
autor
- Institute of Mathematics, Jagiellonian University, Reymonta 4, PL-30-059 Kraków, Poland, Ludwik.M.Druzkowski@im.uj.edu.pl
Bibliografia
- Barabanov, N.E. (1988) On Kalman’s Problem (in Russian). Sibirsk. Mat. Zh. 29 (3), 3-11.
- Bass, H., Connell, E.H. and Wright, D. (1982) The Jacobian Conjecture: reduction of degree and formal expansion of the inverse. Bull. Amer. Math. Soc. 7, 287-330.
- Belov, A. (2004) Endomorphisms of Weyl Algebras and the Jacobian Conjecture (www-annoucement). http://212.201.48.1/stoll/colloquium/MathColloquium Spring2004.html.
- Białynicki-Birula, A. and Rosenlicht, M. (1962) Injective morphisms of real algebraic varieties. Proc. Amer. Math. Soc. 13, 200-203.
- de Bondt, M. and van den Essen, A. (2003) A reduction to the symmetric case. Report 0308 (June 2003) University of Nijmegen (to appear in Proc. Amer. Math. Soc.).
- Cima, A., van den Essen, A., Gasull, A., Hubbers, E.-M.G.M. and Manosas, F. (1997) A polynomial counterexample to the Markus-Yamabe Conjecture. Adv. Math. 131 (2), 453-457.
- Nguyen Van Chau (1993) A sufficient condition for injectivity of polynomial maps on R2. Acta Math. Vietnamica 18 (2), 215-219.
- Diximier, J. (1968) Sur les algebres de Weyl. Bull. Soc. Math. France 96, 209-242.
- Drużkowski, L.M. (1983) An effective approach to Keller’s Jacobian Conjecture. Math. Ann. 264, 303-313.
- Drużkowski, L.M. (1993) The Jacobian Conjecture in case of rank or corank less than three. J. Pure Appl. Algebra 85, 233-244.
- Drużkowski, L.M. (1991) The Jacobian Conjecture. Preprint no 492, Institute of Mathematics, Polish Academy of Sciences, Warsaw.
- Drużkowski, L.M. (2001) New Reduction in the Jacobian Conjecture. Univ. Iagell. Acta Math. 39, 203-206.
- Drużkowski, L.M. and Rusek, K. (1985) The formal inverse and the Jacobian Conjecture. Ann. Polon. Math. 46, 85-90.
- Drużkowski, K. and Tutaj, H. (1992) Differential conditions to verify the Jacobian Conjecture. Ann. Polon. Math. 57 (3), 253-263.
- van den Essen, A. (2000) Polynomial Automorphisms and the Jacobian Conjecture. Birkhauser Verlag, Basel-Boston-Berlin.
- Fessler, R. (1995) A proof of the two dimensional Markus-Yamabe conjecture and a generalization. Ann. Polon. Math. 62, 45-75.
- Gutierrez, C. (1995) A solution to the bidimensional Global Asymptotic Stability Conjecture. Ann. Inst. H. Poincare Anal. Non Lineare 12 (6), 627-672.
- Hartman, Ph. and Olech, C. (1962) On the global asymptotic stability of solutions of differential equations. Trans. Amer. Math. Soc. 104 (1), 154-178.
- Hubbers, E.-M. G.M. (1998) Nilpotent Jacobians. Ph. D. Thesis, Katholike Universteit Nijmegen, The Netherlands.
- Keller, O.-H. (1939) Ganze Cremona-Transformationen. Monatshefte Math. Phys. 47, 299-306.
- Krasiński, T. and Spodzieja, S. (1991) On linear differential operators related to the n-dimensional Jacobian Conjecture. Lecture Notes in Math. 1524 (Real Algebraic Geometry, Rennes - 1991), Springer Verlag, 1992, 308-315.
- Kurdyka, K. and Rusek, K. (1988) Surjectivity of certain injective semialgebraic transformations of Rn. Math. Z. 200, 141-148.
- Markus, L. and Yamabe, H. (1960) Global stability criteria for differential systems. Osaka Math. J. 12, 305-317.
- Meisters, G.H. (1994) Invariants of cubic similarity. In: M. Sabatini, ed., “Recent Results on the Global Asymptotic Stability Jacobian Conjecture”, Workshop held in Trento, Dept. of Mathematics, September 1993. Univ. Studi di Trento, Technical Report UTM 429.
- Meisters, G.H. and Olech, C. (1987) A poly-flow formulation of the Jacobian Conjecture. Bull. Pol. Ac. Sci. 35, 725-731.
- Meisters, G.H. and Olech, C. (1988) Solution of the Global Asymptotic Stability Jacobian Conjecture for the polynomial case. Analyse Mathematique et Applications, Gauthier-Villars, Paris, 373-381.
- Meisters, G.H. and Olech, C. (1990) A Jacobian Condition for injectivity of differentiable plane maps. Ann. Polon. Math. 51, 249-254.
- Meng, G. (2003) Legendre Transform, Hessian Conjecture and Tree Formula. arXiv:math-ph/0308035, 28 Aug. 2003.
- Olech, C. (1963) On the global stability of an autonomus system on the plane. Contributions to Diff. Eq. 1, 389-400.
- Parthasarathy, T. (1983) On Global Univalence. Lecture Notes in Math. 977, Springer-Verlag Berlin-Heidelberg-N.York.
- Pinchuk, S. (1994) A Counterexample to the Real Jacobian Conjecture. Math. Z. 217, 1-4.
- Rusek, K. and Winiarski, T. (1984) Polynomial automorphisms of Cn. Univ. Iagell. Acta Math. 24, 143-149.
- Smale, S. (1998) Mathematical Problems for the Next Century. Math. Intelligencer 20 (2), 7-15.
- Stein, Y. (1989) On linear differential operators related to the Jacobian Conjecture. J. Pure Appl. Algebra 52, 175-186.
- Tutaj-Gasińska, H. (1996) A note on the solution of the two dimensional Wazewski equation. Bull. Polish Acad. Sci. Math. 44 (2), 245-249.
- Winiarski, T. (1979) Inverse of polynomial automorphisms of Cn. Bull. Acad. Polon. Sci. Math. 27, 673-674.
- Yagzhev, A.V. (1980) On Keller’s problem (in Russian). Sibirsk. Mat. Zh. 21, 141-150.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0008-0012