PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of alternating circular magnetic field strength on magnetoimpedance of glass-coated micro-wire

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The presented experiments on giant magnetoimpedance (GMI) effect were carried out using glass-coated amorphous micro-wire specimen of its diameter of 22.4 urn and nominal composition of Co67Fe3.85Ni1.45Mo1.7Si14.5B11.5. The main purpose of these experiments was to demonstrate the influence of the AC-current intensity flowing along this specimen and generating circular alternating magnetic field, on the properties of the GMI-effect. To demonstrate this, the GMI-ratio was measured vs. axial DC-field at various intensities of the AC-current ranging from 0.3 up to 5 mA, the range which corresponds to the intensity of the circular field of around 4.8 - 80 A/m at the surface of the micro-wire. The obtained dependences showed that the maximum of the GMI-ratio occurs at the intermediate intensity of the circular field, around 24 A/m (identified with the threshold field of the micro-wire specimen magnetized in the circumferential direction). This result was confirmed analyzing the dependences of the wire impedance plotted vs. the intensity of AC-current for different selected DC-field as a parameter. The results were interpreted considering the expected domain structure in the wire, in particular, that its surface layer was composed of the stripe domains magnetized circumferentially, alternately in opposite directions ("bamboo structure"). Such a structure is created by the magnetoelastic anisotropy. In order to make this explanation more reliable, the penetration depth of the skin-effect was calculated on the grounds of the classical model. Analysis of the AC-field dependence of the penetration depth additionally confirmed the presented interpretation. The main conclusion which can be drawn from the performed experiments is that, in order to achieve optimum parameters of the GMI from the view-point of application in sensors, AC-current intensity should appropriately be chosen.
Rocznik
Strony
165--173
Opis fizyczny
Bibliogr. 18 poz., wykr.
Twórcy
  • Institute of Physics, Polish Academy of Sciences Al. Lotników 32/46, 02-668 Warszawa, Poland
  • Institute of Physics, Polish Academy of Sciences Al. Lotników 32/46, 02-668 Warszawa, Poland
autor
  • Institute de Ciencias de Materiales de Madrid, SCIC 28049 Cantoblanco, Spain
autor
  • Dpto. Fisica de Materiales, Fac.Qufmica, UPV/EHU Apdo. 1072, 20080 San Sebastian, Spain
  • "TAMag Iberica" S.L., Parque Tecnologico de Miramon Paseo Mikeltegi 52, la Planta 20009 San Sebastian, Spain
autor
  • Institute de Ciencias de Materiales de Madrid, SCIC 28049 Cantoblanco, Spain
Bibliografia
  • 1. R.S. BEACH, A.E. BERKOWITZ, Giant magnetic field-dependent impedance of amorphous Fe-CoSiB wire, Appl. Phys. Lett., 64, 3652-3654, 1994; also: R.S. BEACH, A.E. BERKOWITZ, Sensitive field- and frequency-dependent impedance spectra of amorphous FeCoSiB wire and ribbon, J. Appl. Phys., 76, 6209-6213, 1994.
  • 2. L.V. PANINA, K. MOHRI, Magneto-impedance effect in amorphous wires, Appl. Phys. Lett., 65, 1189-1191, 1994.
  • 3. F.L.A. MACHADO, B.L. DA SILVA, S.M. REZENDE, C.S.MARTINS, Giant ac-magnetoresistance in the soft ferromagnet Co70.4Fe4.6SH5B10, J. Appl. Phys., 75, 6563-6565, 1994.
  • 4. E.P. HARRISON, G.L. TURNEY, H. ROWE, H. GOLLOP, The electrical properties of high permeability wires carrying alternating current, Proc. Royal Soc., 157, 451-479, 1936.
  • 5. K. MOHRI, T. UCHIYAMA, L.P. SHEN, C.M. CAI, L.V. PANINA, Amorphous wire and CMOS ICbased sensitive micro-magnetic sensors (MI sensor and SI sensor) for intelligent measurements and controls, J. Magn. Magn. Mater., 249, 351-356, 2002.
  • 6. I. OGASAWARA, S. UENO, Preparation and properties of amorphous wires, IEEE Trans. Magn., 31, 1219-1223, 1995.
  • 7. G.F. TAYLOR, Process and apparatus for making filaments, United State Patent, 1931.
  • 8. A.V. ULITOVSKY, Method of continuous fabrication of microwires coated by glass, USSR Patent, 1950.
  • 9. V.S. LARIN, A.V. TORCUNOV, A. ZHUKOV, J. GONZALEZ, M. VAZQUEZ, L. PANINA, Preparation and properties of glass-coated microwires, J. Magn. Magn. Mater., 249, 39-45, 2002.
  • 10. M. VAZQUEZ, A. ZHUKOV, Magnetic properties of glass-coated amorphous and nanocrystalline microwires, J. Magn. Magn. Mater., 160, 223-228, 1996.
  • 11. V. ZHUKOVA, A. CHIZHIK, A. ZHUKOV, A. TORKUNOV, V. LARIN J. GONZALEZ, Optimization of giant magnetoimpedance in Co-rich amorphous microwires, IEEE Trans. Magn., 38, 3090, 2002.
  • 12. M. KNOBEL, M. VAZQUEZ, L. KRAUS, [in:] Handbook of magnetic materials, 15, K.H.J. BUSCHOW [Ed.], Elsevier Science, Amsterdam 2003, Ch.5.
  • 13. R. HASEGAWA, Nonmagneostrictive glassy Co-Fe-Ni-Mo-B-Si alloys, J. Appl. Phys., 53, 7819-7821, 1982.
  • 14. A. ZHUKOV, J. GONZALEZ, M. VAZQUEZ, V. LARIN, A. TORCUNOV, [in:] Nanocrystalline and Amorphous Magnetic Microwires, Encyclopedia of Nanoscience and Nanotechnology, U.S. NALWA [Ed.], American Scientific Publishers, 62, 23, 2004.
  • 15. Usov, A. ANTONOV, A. DYKHNE AND A. LAGAR'KOV, Possible origin for the bamboo domain structure in Co-rich amorphous wire, J. Magn. Magn. Mater., 174, 127-132, 1997.
  • 16. D.P. MAKHNOVSKIY, L.V. PANINA, D.J. MAPPS, Field-dependent surface impedance tensor in amorphous wires with two types of magnetic anisotropy: Helical and circumferential, Phys. Rev. B, 63, 144424-144441, 2001.
  • 17. D.-X. CHEN, J.L. MUNOZ, A. HERNANDO, M. VAZQUEZ, Magnetoimpedance of metallic ferromagnetic wires, Phys. Rev. B, 57, 10699-10704, 1998.
  • 18. K.L. GARCIA, M. KUZMIŃSKI, H.K. LACHOWICZ, A. ZHUKOV M. VAZQUEZ, Skin-effect and circumferential permeability in micro-wires utilized in GMI-sensors, Sensors & Actuators A, Physical, 119, 384-389, 2005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0008-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.