PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A rule based machine learning approach to the nonlinear multifingered robot gripper problem

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we present a novel method that utilizes the accumulation of knowledge in a rule base for solving the nonlinear frictional gripper problem for both the isotropic and orthotropic cases. The knowledge is discovered and accumulated in a rule base with the aid of a genetic based machine learning mechanism. This machine learning mechanism extracts rules for solving the problem with the help of the Evolutionary Programming [EP) algorithm. The retrievals are done using the nearest-classifier-algorithm. This approach provides online solutions for the problem, and establishes a dynamic and evolving environment that adapts with new and sudden changes on the grip specifications or on the external forces. The resulting grasping forces using the presented method are compared with grasping forces obtained using other methods, such as the Complementarity Problems. The proposed online method could update the needed grasping forces to keep firm grip if the configuration of the forces externally applied to the object is changed. Numerical examples that illustrate the proposed method are presented.
Rocznik
Strony
553--573
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
autor
  • Faculty of Information Technology Philadelphia University Amman, Jordan
  • Faculty of Engineering Al-Isra Private University Amman, Jordan
Bibliografia
  • Abu-Zitar, R. and Al-Fahed Nuseirat, A.M. (2000) A Neural Network Approach to the Frictionless Gripper Problem. J. Intell. Robot Syst. 29, 27-45.
  • Abu-Zitar, R. and Al-Fahed Nuseirat, A.M. (2001) A Theoretical Approach of an Intelligent Robot Gripper to Grasp Polygon Shaped Objects. J. Intell. Robot Syst. 31, 397-422.
  • Aho, A., Hopcroft, J. and Ullman, J. (1994) Data Structures and Algorithms. Addison-Wesley, Reading, MA.
  • Al-Fahed, A.M. and Panagiotopoulos, P.D. (1992) Frictional Multifingered Robot Gripper: New Type of Implementation. Comput. Struct. 45 (4) 555-562.
  • Al-Fahed Nuseirat, A.M. and Stavroulakis, G.E. (2000) A Complementarity Problem Formulation of the Frictional Grasping Problem. Comput. Methods Appl. Mech. Engrg. 190, 941-952.
  • Al-Fahed, A.M., Stavroulakis, G.E. and Panagiotopoulos, P.D. (1992) A Linear Complementarity Approach to the Frictionless Gripper Problem. Int. J. of Robotics Research 11 (2), 112-122.
  • Al-Fahed Nuseirat, A.M. and Abu-Zitar, R. (2001) Neural Network Approach to Firm Grip in the Presence of Small Slips. J. of Robotic Systems 18 (6), 305-315.
  • Bicchi, A. (1995) On the Closure Properties of Robotic Grasping”. Int. J. of Robotics Research 14 (4), 319-334.
  • Bicchi, A. (2000) Hands for Dexterous Manipulation and Robust Grasping: A Difficult Road Toward Simplicity. IEEE Trans. on Robotics and Automation 16 (6), 652-662.
  • Cox, E. (1994) The Fuzzy Systems Handbook. AP Professional, Boston, MA.
  • Cutkosky, M.R. (1989) Computing and Controlling the Compliance of a Robotic Hand. IEEE Trans. on Robotics and Automation 5 (2), 151-165.
  • Ferris, M.C., Mensier, M. and More, J.J. (1997) NEOS and CONDOR: Solving Optimization Problems over the Internet. Mathematical Technical Report, 06 - 08, Department of Computer Science, University of Wisconsin, 1996. Revised March 1997.
  • Fogel, D.B. (1991) System Identification through Simulated Evolution: A Machine Learning Approach to Modelling. Ginn Press, Needham.
  • Han, L., Trinkle, J.C. and Li, Z.X. (2000) Grasp Analysis as Linear Matrix Inequality Problems. IEEE Trans. on Robotics and Automation 16 (6), 663-674.
  • Kwak, B.M. and Lee, S.S. (1991) A Complementary Problem Formulation of Three-Dimensional Frictional Contact. ASME J. of Applied Mechanics 58 (137), 134-140.
  • Lin, Q., Burdick, J.W. and Rimon, E. (2000) Stiffness-Based Quality Measure for Compliant Grasps and Fixtures. IEEE Trans. on Robotics and Automation 16 (6), 675-688.
  • Liu, Yun-Hui (1999) Qualitative Test and Force Optimization of 3-D Frictional Form-Closure Grasps Using Linear Programming. IEEE Trans. on Robotics and Automation 15 (1), 163-173.
  • Liu, Yun-Hui, (2004) A Complete and Efficient Algorithm for Searching 3-D Form-Closure Grasps in the Discrete Domain. IEEE Trans. on Robotics 20 (5), 805-816.
  • Luenberger, D.G. (1984) Linear and Nonlinear Programming. Addison-Wesley Reading, MA.
  • Markenscoff, X. and Papadimitriou, Ch. H. (1989) Optimum Grip Of a Polygon. Int. J. Robot. Res. 8 (2), 17-29.
  • Markenscoff, X., Ni, L. and Papadimitriou, Ch. H. (1990) The Geometry of Form Closure. Int. J. of Robotics Research 9 (1), 61-74.
  • Michalowski, R. and Mróz, Z. (1978) Associated and non-associated sliding rules in contact problems. Archives of Mechanics 30 (3), 259-276.
  • Mirtich, B. and Canny, J. (1994) Easily Computable Optimum Grasps in 2-D and 3-D. Proc. Int. Conf. Robotics and Automation, 739-747.
  • Murty, K. (1988) Linear Complementarity: Linear and Nonlinear Programming. Heldermann Verlag, Berlin.
  • Nguyen, V-D. (1989) Constricting Stable Grasps. Proc. IEEE Robotics and Automation Conference, Vol III, 1368-1373.
  • Oden, J.T. and Martins, J.A.C. (1985) Models and Computational Methods for Dynamics Friction Phenomena. Computer Methods in Appl. Mech. 50, 67-76.
  • Panagiotopoulos, P.D. (1985) Inequality Problem in Mechanics and Applications. Convex and Nonconvex Energy Functions. Birkh¨auser, Boston-Basel.
  • Pao, Y.H. (1983) Adaptive Pattern Recognition and Neural Networks. Addison-Wesley, Reading, Mass.
  • Ponce, J. and Faverjon, B. (1995) On Computing Three-Finger Force-Closure of Polygonal Objects. IEEE Trans on Robotics and Automatation 11 (6), 868-881.
  • Salisbury, J.K. and Roth, B. (1983) Kinematic and Force Analysis of Articulated Mechanical Hands. J. of Mechanisms Transmission and Automation in Design 105, 35-41.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT5-0007-0103
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.